Cen Wan and Alex A. Freitas. Hierarchical Dependency Constrained Averaged One-Dependence Estimators Classifiers for Hierarchical Feature Spaces
David Kinney and David Watson. Causal Feature Learning for Utility-Maximizing Agents
Verónica Rodríguez-López and Luis Enrique Sucar. Knowledge Transfer for Learning Markov Equivalence Classes
Karine Chubarian and Gyorgy Turan. Approximating bounded tree-width Bayesian network classifiers with OBDD
Tjebbe Bodewes and Marco Scutari. Identifiability and Consistency of Bayesian Network Structure Learning from Incomplete Data
Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Perharz, Thomas Liebig and Kristian Kersting. Conditional Sum-Product Networks: Composing Neural Networks into Probabilistic Tractable Models
Radim Jiroušek. On a Possibility of Gradual Model-Learning
Veronica Tozzo, Davide Garbarino and Annalisa Barla. Missing Values in Multiple Joint Inference of Gaussian Graphical Models
Nils Finke, Marcel Gehrke, Tanya Braun, Tristan Potten and Ralf Möller. Investigating Matureness of Probabilistic Graphical Models for Dry-Bulk Shipping
Nazanin Tehrani, Nimar Arora, Yucen Li, Kinjal Shah, David Noursi, Michael Tingley, Narjes Torabi, Sepehr Masouleh, Eric Lippert and Erik Meijer. Bean Machine: A Declarative Probabilistic Programming Language For Efficient Programmable Inference
Linda C. van der Gaag, Silja Renooij and Alessandro Facchini. Building Causal Interaction Models by Recursive Unfolding
Cory Butz, Jhonatan Oliveira and Robert Peharz. Sum-Product Network Decompilation
Mattis Hartwig and Ralf Möller. Lifted Query Answering in Gaussian Bayesian Networks
Evan Dufraisse, Philippe Leray, Raphaël Nedellec and Tarek Benkhelif. Anomaly Detection using Bayesian Network
Milan Studeny, James Cussens and Vaclav Kratochvil. Dual Formulation of the Chordal Graph Conjecture
Fabrizio Ventola, Karl Stelzner, Alejandro Molina and Kristian Kersting. Residual Sum-Product Networks
Pierre Clavier, Olivier Bouaziz and Grégory Nuel. Gaussian Sum-Product Networks Learning in the Presence of Interval Censored Data
Alessandro Bregoli, Marco Scutari and Fabio Stella. Constraint-Based Learning for Continuous-Time Bayesian Networks
Tomas Pevny, Vasek Smidl, Martin Trapp, Ondrej Polacek and Tomas Oberhuber. Sum-Product-Transform Networks: Exploiting Symmetries using Invertible Transformations
George Orfanides and Aritz Pérez. Learning decomposable models by coarsening
Kiattikun Chobtham and Anthony C. Constantinou. Bayesian network structure learning with causal effects in the presence of latent variables
Pierre Gillot and Pekka Parviainen. Scalable Bayesian Network Structure Learning via Maximum Acyclic Subgraph
Topi Talvitie and Pekka Parviainen. Learning Bayesian Networks with Cops and Robbers
Denis Maua, Heitor Ribeiro, Gustavo Katague and Alessandro Antonucci. Two Reformulation Approaches to Maximum-A-Posteriori Inference in Sum-Product Networks
Charupriya Sharma, Zhenyu Liao, James Cussens and Peter van Beek. A Score-and-Search Approach to Learning Bayesian Networks with Noisy-OR Relations
Meihua Dang, Antonio Vergari and Guy Van den Broeck. Strudel: Learning Structured-Decomposable Probabilistic Circuits
Fan Ding and Yexiang Xue. Contrastive Divergence Learning with Chained Belief Propagation
Jos van de Wolfshaar and Andrzej Pronobis. Deep Generalized Convolutional Sum-Product Networks
Aditi Shenvi and Jim Q. Smith. Constructing a Chain Event Graph from a Staged Tree
Wolfgang Roth and Franz Pernkopf. Differentiable TAN Structure Learning for Bayesian Network Classifiers
Shouta Sugahara, Itsuki Aomi and Maomi Ueno. Bayesian Network Model Averaging Classifiers by Bagging
Kari Rantanen, Antti Hyttinen and Matti Järvisalo. Learning Optimal Cyclic Causal Graphs from Interventional Data
Konrad P. Mielke, Tom Claassen, Mark A.J. Huijbregts, Aafke M. Schipper and Tom M. Heskes. Discovering cause-effect relationships in spatial systems with a known direction based on observational data
Ondřej Kuželka, Vyacheslav Kungurtsev and Yuyi Wang. Lifted Weight Learning of Markov Logic Networks (Revisited Once More Time)
Gaspard Ducamp, Philippe Bonnard, Anthony Nouy and Pierre-Henri Wuillemin. An Efficient Low-Rank Tensors Representations for Algorithms in Complex Probabilistic Graphical Models
Konstantina Biza, Ioannis Tsamardinos and Sofia Triantafillou. Tuning Causal Discovery Algorithms
Laura Azzimonti, Giorgio Corani and Marco Scutari. Structure Learning from Related Data Sets with a Hierarchical Bayesian Score
Marco Zaffalon, Alessandro Antonucci and Rafael Cabañas de Paz. Structural Causal Models Are Credal Networks
Cong Chen, Jiaqi Yang, Chao Chen and Changhe Yuan. Solving Multiple Inference by Minimizing Expected Loss
Cong Chen, Changhe Yuan and Chao Chen. Efficient Heuristic Search for M-Modes Inference
Cassio P. de Campos. Almost No News on the Complexity of MAP in Bayesian Networks
Linda C. van der Gaag and Janneke Bolt. Poset Representations for Sets of Elementary Triplets
Nandini Ramanan, Mayukh Das, Kristian Kersting and Sriraam Natarajan. Discriminative Non-Parametric Learning of Arithmetic Circuits
Yizuo Chen, Arthur Choi and Adnan Darwiche. Supervised Learning with Background Knowledge
Luis Ortiz, Boshen Wang and Ze Gong. Correlated Equilibria for Approximate Variational Inference in MRFs
Yujia Shen, Arthur Choi and Adnan Darwiche. A New Perspective on Learning Context-Specific Independence