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Abstract

The Averaged One-Dependence Estimators classifier is a type of probabilistic graphical model that
constructs an ensemble of one-dependency networks, using each feature in turn as a parent node for
all other features, in order to estimate the distribution of the data. In this work, we propose two new
types of Hierarchical dependency constrained Averaged One-Dependence Estimators (Hie-AODE)
algorithms, which consider the pre-defined parent-child relationship between features during the
construction of individual one-dependence estimators, when coping with hierarchically structured
features. Experiments with 28 real-world bioinformatics datasets showed that the proposed Hie-
AODE methods obtained better predictive performance than the conventional AODE classifier, and
enhanced the robustness against imbalanced class distributions.
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1. Introduction

This work addresses the classification task of machine learning. We propose two new types of
Averaged One-Dependence Estimators (AODE) classifier, namely Hie-AODE and Hie-AODE-Lite,
which consider the pre-defined hierarchical dependency within a tree or a directed acyclic graph
(DAG) of features as a type of hierarchical constraint during the classifier’s training stage. In this
work the features are Gene Ontology (GO) terms, which are structured as a DAG by using a type of
“is-a” relationship to represent gene properties at different levels of description — from very generic
properties (closer to a root of the DAG) to very specific properties (closer to a leaf node in the
DAG). Those genes are classified as pro-longevity or anti-longevity. However, the proposed algo-
rithms can also be applied to any types of hierarchically structured features. For instance, in text
mining or document classification problems, the features represent the presence or absence of words
in a document, since words are naturally organised into generalisation-specialisation hierarchies that
are readily available for machine learning (e.g. the WordNet (Miller, [1995) hierarchy).

The pre-defined hierarchical dependency information (i.e. the ancestor-descendant relation-
ships) is informative and can be exploited for different machine learning tasks. Several authors
proposed a series of feature selection methods (Jenatton et al.,2011a; Mairal and Yu, 2013; Ristoski
and Paulheim, 2014 Wan et al.l [2015; |[Wan and Freitas|, 2016, [2017; [Zhao et al., 2016} \da Silva
et al., 2018) that exploit the hierarchical dependency information to reduce the dataset’s dimen-
sionality and obtained in general better predictive performance than other feature selection methods
that don’t exploit the hierarchical dependency information. In addition, the pre-defined hierarchical
dependency information was also exploited as a type of constraint for training a regression model
(Mairal et al., 2010; Jenatton et al., 2011b)), and for constructing a Bayesian graphical model (Wan
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and Freitas, 2013; Wan and Freitas, |2015). However, none of the above studies has exploited the
hierarchical dependency information to propose new AODE methods. This is an interesting direc-
tion because AODE methods have the power of being an ensemble of classifiers, whilst being also
computationally efficient (Webb et al., 2005).

This paper is organised as follows. Section 2 briefly reviews the background about Gene On-
tology and the conventional AODE classifier. Section 3 proposes two new hierarchical dependency
constrained AODE methods, viz. Hie-AODE and Hie-AODE-Lite. Section 4 presents the experi-
mental methodology and results, and Section 5 presents conclusions and future research directions.

2. Background
2.1 The Hierarchical Structure of the Gene Ontology

The Gene Ontology (GO) (The Gene Ontology Consortium, [2000) is a popular bioinformatics
database that provides unified vocabularies (i.e. Gene Ontology terms) to describe the functions
of gene and gene products. Gene Ontology terms are categorised into three domains: Biologi-
cal Process (BP), Molecular Function (MF) and Cellular Component (CC). Within each domain,
GO terms are structured as a hierarchy by using an “is_a” relationship (a type of generalisation-
specialisation relationship), which defines the parent-child and ancestor-descendant relationships
between GO terms. As shown in Figure 1, those 6 example GO terms are hierarchically struc-
tured, e.g. GO:0044281 is the parent of GO:0044283 and GO:0005996, which are also the parent
of GO:0046364. This type of hierarchy therefore is a Directed Acyclic Graph (DAG), as shown in
Figure 2, where to simplify the notation, those 6 GO terms are represented by 6 arbitrary letters: S,
T, E, M, R and K. In this work, we use GO terms as predictive features to describe genes, leading
to a sparse matrix including binary values of features. For each single gene, the GO term’s value
1 denotes that GO term is used to annotate that gene; whilst the value 0 denotes that gene is not
annotated with that GO term.

2.2 Conventional Averaged One-Dependence Estimators (AODE) Algorithm

Averaged One-Dependence Estimators (AODE) (Webb et al., 2005) is a type of semi-naive Bayes
classification algorithm. Unlike the well-known 0-dependence naive Bayes, AODE is considered as



an /-dependence classifier. It builds an one-dependence estimator for each feature in turn by using
that feature as a parent of all other features in the graph representing dependencies between features.
Moreover, the class attribute is a parent of all features, in all one-dependency estimators. Then, it
calculates the normalised posterior probability over the summation of the product of all features’
one-dependence estimators to make the final classification. More precisely, AODE predicts for each
new instance the most likely class as computed by Equation (1).

argmax (ZP(y,:ﬁl) HP(xﬂy,wi)) @)
y

i=1 j=1
where x; € X (full feature set), xj € X — x; and y is a class label;

The conventional strategy of building one-dependence estimators for individual features and ag-
gregating their predictions improves the generalisation capacity of the trained classifier, which often
shows better predictive performance than other types of semi-naive Bayes classification algorithms.
However, the learning principle of AODE also has the drawback that some parent-child dependen-
cies of the conventional one-dependence estimator violate the ancestor-descendant relationships that
are pre-defined by the given feature hierarchy (in this work, the GO hierarchy). Figures 3.a, 3.d, 3.g,
3.j, 3.m, and 3.p show the topology of each one-dependence estimator built for each feature. When
building the one-dependence estimator for feature M, for example, all other features are considered
dependent on M and the class attribute. Analogously, when using each of the other features (R, F, K,
S, or T) as a parent to build the one-dependence estimators, all other features are considered as the
children of the corresponding parent feature and of the class attribute. This learning principle leads
to the issue of ignoring the pre-defined parent-child dependencies between features. For example,
when building the one-dependence estimator for feature M, all other features are considered as M’s
children, but features S and T are actually parents of M in the hierarchy.

3. Proposed Methods

In this work, we propose two novel Hierarchical dependency constrained Averaged One-Dependence
Estimators algorithms, namely Hie-AODE and Hie-AODE-Lite, which exploit the pre-defined hier-
archical dependency information between features to constrain the parent-child relationships during
the one-dependency estimator learning stage.

In general, Hie-AODE constructs the one-dependence estimator for each parent feature = by
using all other features in the training set except those which are ancestors of x in the feature hi-
erarchy. This principle guarantees to avoid the violation of parent-child relationships defined by
the existing feature hierarchy. Figures 3.b, 3.e, 3.h, 3.k, 3.n, and 3.q show an example topology
of one-dependence estimators built by Hie-AODE. When using e.g. the feature M as the parent
feature in an one-dependence estimator, all other features except S and T are assigned as the child
features of M, due to the fact that S and T are parents of M in the given feature hierarchy, as shown
in Figure 3.b. In addition, note that, when building an estimator for a feature which is a leaf of
the whole feature hierarchy, the one-dependency estimator built by Hie-AODE is equivalent to the
full independence estimator (a.k.a. Naive Bayes). As shown by Figure 3.k, all other features are
independent to K, since they are all parent or ancestor features of K. Conversely, when building an
estimator for a feature which is a root of the whole hierarchy, the one-dependency estimator built
by Hie-AODE is equivalent to the one built by the conventional AODE. As shown in Figure 3.n,
when using e.g. feature S as a parent to build the one-dependence estimator, all other features are
dependent on S, because feature S is not the child or descendant of any feature.
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Figure 2: Example of feature dependencies represented by AODE, Hie-AODE and Hie-AODE-Lite
for the feature DAG in Figure 2. The dashed edges show that all features are dependent on the class
attribute. The solid edges represent dependencies between features.
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Algorithm 1 Hie-AODE and Hie-AODE-Lite.

Initialise DA G with all features in Dataset;

Initialise TrainSet;

Initialise TestSet;

for each z; € X do
Initialise A(z;) given the DAG;
foreachz; e X & zj # x; & 5 ¢ A(x;) do

‘ Create CPT(z;, z;, TrainSet)

end for

end for

for each Inst € TestSet do

| Classify(Inst, X, CPT);
: end for
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where xj € X = A(x;) — 4, and x, € A(x;);

Hie-AODE-Lite constructs the one-dependence estimator for each feature in a similar way to
Hie-AODE. However, the former directly removes the independent features which only depend on
the class attribute from the AODE graph structure. This strategy reduces the number of parameters
that are estimated by some individual one-dependence estimators during the training stage of the
conventional AODE. Figures 3.c, 3.f, 3.1, 3.1, 3.0 and 3.r show the topology of feature dependencies
considered by Hie-AODE-Lite. For example, when building the one-dependence estimator for fea-
ture M (Figure 3.c), features S and T are removed from the feature set, due to the fact that those two
features are parents of feature M in the feature hierarchy (Figure 2). Analogously, when building
the one-dependence estimator for feature R, feature T is removed from the feature set.

The high-level pseudocode of Hie-AODE and Hie-AODE-Lite is shown in Algorithm 1, where
lines 1 — 3 initialise the feature hierarchy (i.e. the DAG), the training and testing datasets. In lines 4
-9, during the training stage of Hie-AODE and Hie-AODE-Lite, each feature x; is used as a parent
to build an one-dependence estimator. In order to consider the pre-defined hierarchical dependency
constraint (i.e. ancestor-descendant relationships between features), line 5 initialises the set of an-
cestors for each parent feature z; (denoted by A(z;)) according to the feature hierarchy DAG.
Then lines 6 — 8 create the conditional probability tables (CPT) for all other non-ancestor features
in the feature set X, given their dependency on x; and the class attribute. Note that Hie-AODE also
creates the CPTs for feature x;’s ancestor features that depend only on the class attribute, unlike
Hie-AODE-Lite. Hence, although Hie-AODE and Hie-AODE-Lite share the same pseudocode of
Algorithm 1 at a high level of abstraction, they compute different CPTs at line 7. As a result of
their difference, during the prediction stage, in lines 10 — 12, Hie-AODE and Hie-AODE-Lite adopt
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Equations 2 and 3 respectively to calculate the posterior probability given the testing instance’s val-
ues of feature set X and the calculated CPTs. In Equation 2, for each Hie-AODE one-dependence
estimator, the product of the conditional probabilities of all non-ancestor features that are dependent

I

n
on the parent feature x; and the class attribute y (i.e. [[ P(zj|y, z;), where n’ denotes the number
j'=1
of non-ancestor features of x;) is multiplied by the product of the probabilities of all ancestor fea-
a

tures that are only dependent on the class attribute (i.e. [[ P(x|y), where a denotes the number of

k=1
ancestor features of x;). However, in Equation 3, the posterior probability of each Hie-AODE-Lite
one-dependence estimator only includes the conditional probability of all non-ancestor features that
are dependent on the parent feature and the class attribute.

4. Computational Experiments
4.1 Experimental Methodology

We evaluate the predictive performance of the proposed hierarchical dependency constrained AODE
algorithms on 28 ageing-related gene datasets (Wan and Freitas, [2017). Those datasets comprise
from 102 to 572 genes from 4 different model organisms, where each organism is associated with
7 different datasets having different sets of features, as shown in Table 1. In this table, #F, #E and
#1 denote, respectively, the number of features (GO terms), the number of edges in the feature hi-
erarchy, and the number of instances (genes) in each dataset. Each gene is assigned a class label
of pro-longevity or anti-longevity, and is described by different Gene Ontology terms (predictive
features) from different domains, i.e. Biological Process (BP), Molecular Function (MF) and Cellu-
lar Component (CC), and their different types of combinations, i.e. BP+MF, BP+CC, MF+CC, and
BP+MF+CC.

We compare the proposed Hie-AODE and Hie-AODE-Lite with the conventional AODE al-
gorithm that does not consider the pre-defined hierarchical dependency constraints. In addition,
another type of hierarchical dependency constrained regression method — proximalGraph (Mairal
et al., 2010), and the Gene Ontology hierarchy-based Bayesian network augmented naive Bayes
(GO-BAN) method (Wan and Freitas| 2015) are also compared. The sensitivity and specificity val-
ues are calculated to evaluate the performance on predicting the positively and negatively labeled
instances respectively.

The sensitivity is the proportion of positive (pro-longevity) instances correctly predicted as posi-
tive, while the specificity is the proportion of negative (anti-longevity) instances correctly predicted
as negative. The Geometric Mean (GMean) of sensitivity and specificity (the square root of the
product of sensitivity and specificity values) is also adopted to evaluate the performance on predict-
ing the positively and negatively labeled instances simultaneously. We use these measures because
they were also used in previous work using these datasets (Wan and Freitas| [2015] 2017; da Silva
et al., 2018). The values of those performance metrics are obtained by conducting a well-known
stratified 10-fold cross validation.



Table 1: Characteristics of the ageing-related datasets.

Worm Datasets Fruit-fly Datasets Mouse Datasets Yeast Datasets

Feature Types #F #E  #I #F #E  #I #F #E  #I #F #E  #1I
BP 830 1,437 528 698 1,190 127 1,039 1,836 102 679 1,223 215
MF 218 259 279 130 151 102 182 205 98 175 209 157
CcC 143 217 254 75 101 90 117 160 100 107 168 147
BP+MF 1,048 1,696 553 828 1,341 130 1,221 2,041 102 854 1,432 222
BP+CC 973 1,654 557 773 1,291 128 1,156 1,996 102 786 1,391 234
MF+CC 361 476 432 205 252 123 299 365 102 282 377 226
BP+MF+CC 1,191 1913 572 903 1,442 130 1,338 2,201 102 961 1,600 238

4.2 Results on Predictive Accuracy

Table 2 shows the GMean values obtained by five different classification methods over 28 datasets.
Overall, Hie-AODE-Lite is the best-performing method, due to its highest GMean values (figures
in bold) obtained on 13 out of 28 datasets and the best average rank of 2.04. The second best-
performing method is Hie-AODE, which obtained the highest GMean values on 7 out of 28 datasets
and the second best average rank of 2.45. The conventional AODE method obtained the highest
GMean values on 5 out of 28 datasets with an average rank of 2.55, which is better than proximal-
Graph’s and GO-BAN’s average ranks, i.e. 3.43 and 4.53.

We used the pairwise two-tailed Wilcoxon signed-rank test at the 0.05 significance level to
compare the average ranks based on the GMean values obtained by Hie-AODE-Lite and each of
the other four methods. The results confirm that Hie-AODE-Lite significantly outperforms the con-
ventional AODE, proximalGraph and GO-BAN, with p-values of 3.8e-02, 7.20e-03 and 4.19e-05,
respectively. In addition, there is no significant difference between the predictive performance of
Hie-AODE-Lite and Hie-AODE, due to a p-value of 5.8e-02.

Note that GO-BAN performed much worse than Hie-AODE and Hie-AODE-Lite, even though
GO-BAN also uses the pre-defined feature hierarchy to constrain its feature dependencies net-
work, based on the same principle used by Hie-AODE and Hie-AODE-Lite to constrain their one-
dependence estimators. An explanation for the much worse performance of GO-BAN is that its
dependence network doest not represent dependencies between non-hierarchically related features,
where a feature is neither an ancestor nor a descendant of the other feature. An example is the pair
of features F and M in Figure 2. By contrast, Hie-AODE and Hie-AODE-Lite are more flexiable,
they represent such dependencies.
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Table 2: Predictive accuracy for conventional AODE, Hie-AODE, Hie-AODE-Lite, proximalGraph and GO-BAN methods.

Feature
AODE Hie-AODE Hie-AODE-Lite proximalGraph GO-BAN
Types
Worm (Caenorhabditis elegans) Datasets
Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM
BP 40.243.5  79.6423 56.6 40.6+£3.5 77.1+£2.5 559 40.1+£3.1 79.6+£3.1 565 23.5+18 76.8+£1.9 424 287+22 86.5+1.8 49.8
MF 49.64£2.9 488452 492 49.6+34 482449 489 553432 488+4.6 519 635148 444446 531 34.7+45 665145 48.0
cC 43245.1 744425 567 423+45 724430 553 483+6.0 69.9+3.7 581 63.0£5.7 38.0+4.4 49.0 33.7+45 814422 524
BP + MF 40.9+2.8 788419 56.8 46.0+2.7 774422 59.7 398+3.0 774420 555 202426 76.8+£1.3 394 30.0+27 847417 504
BP + CC 40.9+3.0 80.54+2.2 574 41.8+2.6 779426 57.1 408£1.9 79.1+22 56.8 240420 753+12 425 29.1+2.1  86.64+1.7 50.2
MF + CC 46.5+2.8 713438 57.6 50.0+2.2 675439 581 453435 683+3.6 556 57.1+56 41.6£3.5 487 353+29 802432 532
BP+MF +CC 39.0+2.8 785+2.1 553 399+3.1 77.1+1.8 555 39.844.0 78.8+24 56.0 23.3+24 722435 410 31.2+£29 852+15 51.6
Fly (Drosophil. l ) D
Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM
BP 857429 233495 447 86.8+2.8 29.2+10.0 50.3 87.843.5 26.7+£104 484 60.2+53 342488 454 100.0+£0.0 0.0+0.0 0.0
MF 82,6162 36.5+£6.1 549 83.1+45 36.5+£6.1 551 83.1+4.5 27.843.4 481 549456 54.0+8.7 544 912433 265+£34 492
cC 854458 40.049.7 584 82.1+6.8 433+10.0 59.6 854452 46.7+11.3 63.2 413+6.6 70.0+8.8 53.7 935+2.6 28.6+11.1 51.7
BP + MF 88.9+44 375456 577 87.8+42 375456 574 91.1440 375456 584 724433 275475 446 97.8+15 0.0£0.0 0.0
BP + CC 86.7+4.0 425487 60.7 84.6+4.1 425487 60.0 85.7+33 450485 621 712457 300483 462 98.9+I1.1 0.0£0.0 0.0
MF + CC 942432 450433 651 942432 475445 669 942432 425438 633 614439 60.0+63 60.7 953+19 31.6£53 549
BP+MF +CC 878+2.6 37.5+85 574 878+2.6 37.5+85 574 889+23 40.0+9.3 59.6 78.0+4.8 30.0+69 484 98.9+I1.1 26+25 160
Mouse (Mus musculus) Datasets
Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM
BP 92.9+32 445459 643 929+32 445459 643 914438 445459 63.8 28.6+53 68.8+8.1 443 985+1.4 265+£5.0 511
MF 77.1+£52 40.0+11.2 555 77.1£52 40.0+£11.2 555 79.8+4.4 43.3+104 588 69.0£6.7 57.5+45 63.0 90.8+3.3 27.3+£10.0 49.8
cC 83.8+3.6 31.0£79 51.0 81.0+33 31.0£7.9 50.1 824+3.1 39.0£11.8 56.7 81.0+£55 357485 53.8 864433 353+11.2 552
BP + MF 914432 37.7£6.7 587 914432 37.7+6.7 587 88.6429 37.7+6.7 57.8 66.0+4.1 61.0+75 63.5 985+1.4 294464 538
BP + CC 88.6+4.7 36.2+6.5 56.6 90.0+4.8 39.54£8.7 59.6 85.7+4.8 42.8+7.6 60.6 80.0+5.0 37.849.5 550 985+1.4 29.4+64 538
MF + CC 88.6+42 51.8+12.4 67.7 90.0+3.7 485+11.3 66.1 88.6+3.6 48.5+113 656 77.4+49 37.8493 54.1 912432 26.5+88 492
BP+MF +CC 90.0+4.8 387+82 59.0 90.0+4.8 38.7+89 59.0 90.0+43 42.0+8.6 61.5 79.4+54 403499 56.6 98.5£14 26.5+10.5 51.1
Yeast (Saccharomyces cerevisiae) Datasets
Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM
BP 6.7+44 97.8+12 256 6.7+44 97.8+12 256 133454 93.0+23 352 96.7+£32 10.8+2.7 323  0.0+£0.0  100.0£0.0 0.0
MF 33433 947+£19 177 0.0£0.0 925425 0.0 0.0£0.0 91.0£2.8 0.0 4504103 61.14£3.8 524 0.0+£00 992408 0.0
cC 15.0+£7.6  97.64£12 383 183+7.6 96.8+1.3 421 217475 96.0£1.3 456 10.0+6.3 862453 294 12.5+£6.1 99.240.8 352
BP + MF 33+33  98.9+0.7 18.1 10.04+5.1 98.9+0.7 31.4 133454 94.8+1.1 355 533497 593434 562 0.0+£0.0 100.0+£0.0 0.0
BP + CC 10.0+£5.1  99.5+0.5 31.5 133454 99.5+0.5 364 23.3+7.1 950+1.7 47.0 233467 829+35 440 0.0+0.0 100.0£0.0 0.0
MF + CC 26.7+£9.7  97.4+12 510 267497 97.4+12 510 267497 949+0.8 503 21.7£7.5 853+22 43.0 0.0+0.0 100.0£0.0 0.0
BP+MF +CC 33+33 99.5+05 18.1 6.7£44 99.5+0.5 258 233487 94.7+1.8 47.0 20.0+7.0 82.6+2.6 40.7 0.0+£0.0 100.0£0.0 0.0
Ave. Ranks 2.55 2.45 2.04 343 4.53




Table 3: The formulas for calculating the number of dependency edges for different AODE algorithms.

Methods #FF_Edges #CF_Edges #Edges
n n
AODE Stn-1)=n?-n S n=n? 2n2 - n
i=1 i=1
n n n n
Hie-AODE Stn-a; - D)=n?-n-> a Son=n? 2n2 —n - Y a;
i=1 i=1 i=1 i=1
n n n n n
Hie-AODE-Lite Stn-a; - 1)=n?-n->a Sn-a)=n- > a m2 —n-2x> a;
i=1 i=1 i=1 i=1 i=1

4.3 The differences among the numbers of dependency edges for AODE, Hie-AODE or
Hie-AODE-Lite

We further discuss the difference between AODE and our proposed methods (i.e. Hie-AODE and
Hie-AODE-Lite) by comparing the total number of dependency edges per One Dependency Esti-
mator (ODE). The total number of dependency edges #Edges for each ODE consists of two types
of dependency edges, i.e. the feature—feature dependency edges, #FF_Edges; and the class—feature
dependency edges, #CF_Edges. The formulas for calculating those figures for different AODE
methods are summarised in Table 3, where n denotes the total number of features (which is also
the number of ODEs), and a; denotes the number of ancestors of the i, feature in the pre-defined
hierarchy.

Table 4 reports the total number of edges used by AODE (#Edges_AODE), and the correspond-
ing difference to the smaller number of edges considered by Hie-AODE (#Diff_Edges_Hie-AODE)
and Hie-AODE-Lite (#Diff_Edges_Hie-AODE-Lite), respectively. That is, in terms of the for-

n

mulas shown in Table 3, #Diff Edges_Hie-AODE = ) a;, and #Diff Edges_Hie-AODE-Lite =
i=1

n
2x > a;. In general, the values of #Edges_AODE range from 11,175 to 3,579,150 over all 28
i=1

difflerent datasets. The datasets that consist only of the CC type of features lead to the smallest
values of #Edges_AODE for each model organism, due to the fact that the number of CC type
of features is also the smallest, compared with other types of features. Conversely, the datasets
that consist of the combination of BP, MF and CC types of features lead to the largest value of
#Edges_AODE for each model organism, because of their largest numbers of features. The values
of #Diff_Edges_Hie-AODE range from 295 to 10,838, reflecting the smaller values of #FF_Edges
for Hie-AODE, compared with AODE. Analogously, the values of #Diff_Edges_Hie-AODE-Lite
range from 590 to 21,676, also reflecting the smaller values of both #FF_Edges and #CF_Edges for
Hie-AODE-Lite, compared with AODE.
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Table 4: The total number of edges for AODE and the difference to the number of edges for Hie-AODE and Hie-AODE-Lite.

‘Worm Datasets Fly Datasets Mouse Datasets Yeast Datasets
Feature
#Diff_Edges #Diff_Edges #Diff_Edges #Diff_Edges #Diff_Edges #Diff_Edges #Diff_Edges #Diff_Edges
Types #Edges_AODE #Edges_AODE #Edges_AODE #Edges_AODE

Hie-AODE  Hie-AODE-Lite Hie-AODE  Hie-AODE-Lite Hie-AODE  Hie-AODE-Lite Hie-AODE  Hie-AODE-Lite

BP 1,376,970 8,006 16,012 973,710 5,043 10,086 2158,003 9,743 19,486 921,403 7,681 15,362

MF 94,830 994 1,988 33,670 537 1,074 66,066 652 1,304 61,075 749 1,498

cc 40,755 648 1,296 11,175 295 590 27,261 443 886 22,791 524 1,048

BP+MF 2,195,560 9,000 18,000 1,370,340 5,580 11,160 2,980,461 10,395 20,790 1,457,778 8,430 16,860

BP+CC 1,892,485 8,654 17,308 1,194,285 5,338 10,676 2,671,516 10,186 20,372 1,234,806 8,205 16,410

MF+CC 260,281 1,642 3,284 83,845 832 1,664 178,503 1,095 2,190 158,766 1,273 2,546

BP+MF+CC 2,835,771 9,648 19,296 1,629,915 5875 11,750 3,579,150 10,838 21,676 1,846,081 8,954 17,908

4.4 The robustness against class imbalanced distribution

We further investigate the predictive performance of the proposed Hie-AODE and Hie-AODE-Lite
algorithms by evaluating their robustness against the class imbalance problem. We calculate the
Pearson correlation coefficient r between the GMean values and the degree of class imbalance D,
which ranges from 0.0 to 1.0 and is calculated by Equation 4, where #M inor denotes the number
of instances assigned to the minority class, and #M ajor denotes the number of instances assigned
to the majority class.

#Minor
#Major
The conventional AODE algorithm has a weak robustness against the class imbalance problem,
due to the its strong negative correlation coefficient value r of —0.729, suggesting that in general
higher degrees of class imbalance lead to lower GMean values. However, both Hie-AODE and Hie-
AODE-Lite show somewhat stronger robustness, due to their better r values of —0.662 and —0.553,
respectively. This is consistent with the fact that both algorithms obtain higher GMean values than
the standard AODE algorithm. In addition, GO-BAN shows the weakest robustness (with r=-0.789)
among all 5 algorithms, whereas proximalGraph shows the strongest robustness (with r=-0.283).

D=1- )

5. Conclusion

In this work, we propose two novel hierarchical dependency constrained averaged one-dependence
estimators classification algorithms. Both proposed algorithms successfully outperformed the stan-
dard AODE algorithm (which ignores hierarchical feature dependencies), and also outperformed
two other algorithms that exploit hierarchical feature dependencies during the classifier’s training
stage. This finding confirms the usefulness of the information about hierarchical dependencies be-
tween features for the task of classification, and encourages future research on new algorithms for
exploiting this type of hierarchal dependency constraints. Future work could also involve experi-
ments with other versions of AODE (Yang et al., 2006; 'Webb et al., 2012)) and more general model
averaging Bayesian network classifiers (Chen et al., 2016} [Liao et al., 2018 Rohekar et al., 2018}
Chen et al., 2018};|Chen and Yuan, [2019; [Talvitie et al., [2019).
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