
LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

Learning Bayesian Networks with Cops and Robbers

Topi Talvitie TOPI.TALVITIE@HELSINKI.FI
Department of Computer Science, University of Helsinki, Finland

Pekka Parviainen PEKKA.PARVIAINEN@UIB.NO

Department of Informatics, University of Bergen, Norway

Abstract
Constraint-based methods for learning structures of Bayesian networks are based on testing con-
ditional independencies between variables and constructing a structure that expresses the same
conditional independencies as indicated by the tests. We present a constraint-based algorithm that
learns the structure of a Bayesian network by simulating a cops-and-a-robber game. The algo-
rithm is designed for learning structures of low treewidth distributions and in such case it conducts
conditional independence tests only with small conditioning sets.
Keywords: Bayesian networks; Structure learning; Constraint-based methods; Treewidth.

1. Introduction

Bayesian networks are representations of joint probability distributions. A Bayesian network con-
sists of two parts: a structure and parameters. The structure of a Bayesian network is a directed
acyclic graph (DAG) and it expresses conditional independencies in the distribution. The parame-
ters specify the conditional distributions.

Bayesian networks are often learned from data. There are two main approaches: score-based
and constraint-based. In the score-based approach, one assigns each DAG a score based on how
well it fits to the data and then tries to find a network with maximum score. In the constraint-based
approach, one tests conditional independencies between variables and tries to construct a DAG that
expresses the same conditional independencies and dependencies that are implied by the test results.

In this paper, we take the constraint-based approach. When designing an efficient constraint-
based algorithm, it is desirable that the algorithm conducts as few conditional independence tests
as possible. Furthermore, the larger the conditioning set, the more unreliable the tests are. Thus, it
is also desirable that the conditional independence tests use as small conditioning sets as possible.
Typically, the number of conditional independence tests and the sizes of the conditioning sets de-
pend on the structure of the underlying Bayesian network. In other words, it is possible to analyze
parameterized complexity of constraint-based learning with respect to some structural parameters.
For example, the number of conditional independence tests conducted by the PC algorithm Spirtes
et al. (2000) and its variants is upper bounded by nO(d), where n is the number of nodes and d is the
highest degree of the nodes in the data-generating DAG (given standard assumptions), and the sizes
of conditioning sets are O(d).

From a theoretical point of view, it is interesting to see to what extent it is possible to develop
algorithms whose running time or the number of conditional independence tests conducted is pa-
rameterized by other structural properties. In this paper, we study parameterized complexity with
respect to the treewidth of the data-generating Bayesian network. Treewidth is a property of a graph
that measures how close the graph is to a tree. It is particularly interesting parameter in the context

1

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

of Bayesian networks, because inference in Bayesian networks is tractable if the structure of the
Bayesian network has low treewidth. Our main result (Theorem 5) shows that the structure of a
Bayesian network whose treewidth is at most k can be learned in O(nk+4) time by conducting at
most O(nk+3) conditional independence tests with conditioning sets of size at most k + 1.

One way to define treewidth is to use a cops-and-a-robber game where cops chase a robber who
moves along the edges of a graph: the lower the treewidth, the fewer cops are needed to catch the
robber. Our algorithm is based on simulating this game. The challenge we face is that the graph
is unknown and the cops have to conduct conditional independence tests to gain information about
the graph. Intuitively, we try to find separators that partition the graph into disjoint subgraphs.
Separators are powerful in the sense that once we have found one, we know that there are no arcs
between the disjoint subgraphs and we can recursively solve these smaller problems.

1.1 Related Work

Constraint-based methods can be informally divided into several types. The PC algorithm (Spirtes
et al., 2000) and its variants typically start with a complete network and then remove edges by
conditioning on adjacent nodes. Local learning (e.g., (Aliferis et al., 2010)) is based on finding
neighbors or Markov blankets of single nodes and then constructing the global DAG based on this
local information. Our algorithm tries to find separators and divide nodes to smaller sets that can
be solved separately. A notable example of similar algorithms is the recursive method presented by
Xie and Geng (2008).

There is also work on PAC-learning graphical models with low treewidth (Chechetka and Guestrin,
2007; Narasimhan and Bilmes, 2004). The algorithm by Chechetka and Guestrin (2007) finds a tree
decomposition in time O(n2k+3)1.

It should be noted that score-based methods for finding bounded treewidth Bayesian networks
(e.g., (Elidan and Gould, 2008; Korhonen and Parviainen, 2013)) have a different setting compared
to our method. They find the highest-scoring network among the networks with bounded treewidth;
They make no assumptions on the data-generating distribution and work also if the data-generating
network has high treewidth.

2. Preliminaries

In this section, we introduce notation, definitions and known results that are used later.

2.1 Bayesian Networks

Let G = (N,A) be a directed acyclic graph where N is the node set and A is the arc set. We denote
the parents of the node v in G by Av. We use the notation G[X] for the subgraph of G induced by
X ⊆ N . Furthermore, we denote n = |N |.

A distribution factorizes with respect to a DAG G if the joint probability distribution can be
written in the form

P (N) =
∏
v∈N

P (v |Av).

1. It should be noted that Chechetka and Guestrin (2007) are interested in sample complexity and thus their set-up is
somewhat different compared to ours.

2

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

If a distribution factorizes with respect toG, then it can be represented by a Bayesian network whose
structure is G. Formally, a Bayesian network is a pair (G, θ), where G is a DAG and θ specifies the
parameters of the local conditional distributions P (v |Av).

Random variables u and v are conditionally independent given a set of variables S in a distribu-
tion P if P (u, v |S) = P (u |S)P (v |S). We use the notation u ⊥ v |S to denote that u and v are
conditionally independent given S.

A collider on a path is a node with two incoming arcs along the path. A path in a DAG is
blocked by a set of variables S if (i) there is a collider on the path such that neither the collider or
any of its descendants is in the conditioning set S or (ii) there is a non-collider on the path such that
it is in the conditioning set S. Nodes u and v are d-separated by S if all paths between u and v are
blocked by S.

It can be shown that if u and v are d-separated by S in a DAG G, then u and v are condi-
tionally independent given S in all Bayesian networks whose structure is G. Particularly, every
Bayesian network satisfies the local Markov property: a node is conditionally independent of its
non-descendants given its parents.

In the constraint-based approach, the goal is to find a DAG G such that u and v are condition-
ally independent given S in the data-generating distribution if and only if u and v are d-separated
by S in G. The “if” direction follows directly from the factorization property of Bayesian net-
works. However, to guarantee that conditional independence implies d-separation, we have to make
assumptions. A key assumption is called faithfulness.

Definition 1 (Faithfulness) A distribution P is faithful to a DAG G if conditional independence
v ⊥ u |S in P implies that v and u are d-separated by S in G.

It follows that if the data-generating distribution is faithful to DAG G, all variables in G are
observed and follow the same distribution then conditional independence implies d-separation.

We note that the found DAG is not necessarily unique, that is, there can be several DAGs that
have the same set of d-separations (in other words, express the same set of conditional indepen-
dencies). Such DAGs form a Markov equivalence class. It is known that two DAGs are Markov
equivalent if they have the same skeleton and the same set of v-structures. The skeleton of a DAG
is an undirected graph that is obtained from the DAG by removing the directions of the arcs. A
v-structure is a collider structure u → w ← v such the there is no arc between u and v. A Markov
equivalence class can be represented by a completed partially directed acyclic graph (CPDAG)2

which has both directed and undirected edges. A directed edge in a CPDAG corresponds to an
arc that points to the same direction in all DAGs in the Markov equivalence class; other edges are
undirected.

2.2 Treewidth

Let H = (N,E) be a undirected graph where N is the node (vertex) set and E is the edge set. Let
X = {X1, . . . , Xm} be a collection of subsets of N . Let T be a tree whose vertex set is X; we call
the elements of X bags. Now, the pair (T,X) is a tree decomposition of H if

1. Every element of N is member of at least one bag, that is, ∪iXi = N ,

2. Also known as an essential graph.

3

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

2. For each edge {u, v} ∈ E there exists a bag Xi such that both u ∈ Xi and v ∈ Xi

3. Running intersection property: For every node v ∈ N , the subtree of T induced by the bags
containing v is connected.

The width of a tree decomposition is the size of the largest bag minus one. Treewidth of graph H is
defined as the smallest width over all tree decompositions of H .

Treewidth can be equivalently defined also using the cops-and-a-robber game (Seymour and
Thomas, 1993). In this game, there is one robber and k + 1 cops. The robber moves infinitely fast
from one node to another using edges of a graph. At any given moment, a cop either occupies one
node or is “in the air” with a helicopter. The goal of the robber is to evade capture and the goal of
the cops is to catch the robber by landing on the node occupied by the robber. Note that the cops
can move from any node to any other node but the movement of the robber is limited to the edges of
the graph and it cannot move through a node occupied by a cop. When a cop moves from one node
to another it spends a positive amount of time “in the air”: the robber is infinitely fast so if he sees
a cop landing to the node where he is currently, he has time to move away before the cop catches
him.

It has been shown (Seymour and Thomas, 1993) that k + 1 cops have a winning strategy in this
game on graph H if and only if the treewidth of the graph is at most k.

The structure of a Bayesian network is a directed graph, so the above definitions are not directly
applicable to Bayesian networks. Let the moral graph of a DAG G = (N,A) be an undirected
graph H = (N,E) such that an edge {u, v} ∈ E if and only if uv ∈ A, vu ∈ A or there exists
w ∈ N such that uw ∈ A and vw ∈ A. The treewidth of a Bayesian network is defined to be the
treewidth of the moral graph of its structure.

In our algorithm, we will use the following property of moral graphs: If a node u is disconnected
from v in H[N \X], then u and v are d-separated by X in G.

3. Algorithm

Our algorithm for learning the the structure G of the Bayesian network works in two phases. In the
first phase, described more in detail in Section 3.1, we learn a tree decomposition of width k of the
moral graph H , where k is the treewidth of H . We do this by successively increasing a parameter k
starting from 1, and for each value we solve whether k + 1 cops can always catch one robber in the
cops-and-a-robber game on H using independence queries with conditioning set size at most k+1.
If the answer is in the affirmative, we conclude that k is indeed the treewidth of H and obtain the
tree decomposition of width k as a byproduct; otherwise, k is too small and we need to repeat the
process with k incremented by one.

In the second phase, we use additional independence queries to prune edges from the supergraph
induced by the tree decomposition to obtain the skeleton of G, and orient the edges to obtain the
CPDAG of G. This process is described in more detail in Section 3.2.

3.1 Learning the Tree Decomposition

To check whether k+1 cops can always catch the robber, we use a recursive dynamic programming
algorithm that keeps track of the set C of nodes containing cops and the set R of nodes in which the
robber can move. To limit the possible states we need to consider, we simplify the way the game is
played without affecting the end result as follows.

4

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

• The set of cops C is always kept minimal, that is, they must be exactly the boundary ∂R of
the setR, that is, the nodes inN \R that are adjacent inH to at least one node inR. Omitting
any of these cops would expand the area accessible to the robber, and conversely, additional
cops do not affect the game at all as they do not block the robber.

• The cops never retreat, that is, the cops move always by moving one cop waiting in a heli-
copter to a node v ∈ R, finding out which componentR′ ofR\{v} the robber went, updating
R = R′ and finally removing the cops that are no longer adjacent toR. The fact that this does
not affect the outcome follows from the result due to Seymour and Thomas (1993) on the
equivalence of searching and monotone searching in the cops-and-a-robber game.

• Initially there is only one cop on the graph in an arbitrary node v0 ∈ N and the robber is in
one of the components of N \ {v0}. This does not affect the outcome, because if the robber
is hiding in v0, the cops have to traverse that node.

To implement this algorithm, we define three functions, PRESOLVE, SOLVE and EXTRACTCOMP.
The first two functions are given a pair (C,R) of sets of nodes, and they return a Boolean value on
whether the cops currently occupying nodes C can win if the robber is in a set R. For SOLVE, the
arguments must always be in the minimal form: H[R] is a non-empty connected subgraph of H ,
and C = ∂R. The function PRESOLVE works as a preprocessor for SOLVE; in its arguments, we
allow R to be empty or disconnected, and the only requirement for C is that ∂R ⊆ C ⊆ N \ R.
PRESOLVE partitions H[R] into components with the help of EXTRACTCOMP and calls SOLVE for
each component R′ and set of cops C ′ = ∂R′; the cops have to win regardless of which component
the robber chooses. SOLVE considers all the ways one cop waiting in a helicopter can advance
into R, calling PRESOLVE to evaluate each of them and returning true if at least one successful
advancement is found. The algorithm is started by calling PRESOLVE({v0}, N \{v0}); if the return
value is true, the cops win.

To obtain structural information on H , the functions use queries to a conditional independence
oracle; the result of the independence query for nodes u and v with a conditioning set S, denoted
by INDTEST(u, S, v), is true if u ⊥ v |S, or equivalently by the faithfulness assumption, if u and v
are d-separated by S in G. The pseudocodes of the functions PRESOLVE, SOLVE, EXTRACTCOMP

are given in Algorithm 1. To prove that the algorithm uses INDTEST correctly to reason about the
structure of H , we need the following two lemmas.

Lemma 2 If R ⊆ N and ∂R ⊆ C ⊆ N \ R, then for all c ∈ C it holds that c ∈ ∂R if and only if
there exists r ∈ R such that INDTEST(c, C \ {c}, r) returns false.

Proof To prove the implication in the forward direction, assume that c ∈ ∂R. By definition, c
has a neighbor x ∈ R in H . If x and c are connected by an edge in G, then the claim holds for
r = x because adjacent nodes are never d-separated. Otherwise, the edge between c and x has been
added to H due to moralization, which means that G contains a v-structure c → v ← x for some
v ∈ N \ {c, x}. If v ∈ R, then the claim holds for r = v. If v 6∈ R, then because v is adjacent to
x ∈ R, it holds that v ∈ ∂R and thus v ∈ C \ {c}. Hence the claim holds for r = x, because the
path from c to x through v in G is not blocked by C \ {c}.

To complete the proof of the equivalence, it suffices to observe that if c 6∈ ∂R, thenC\{c} ⊇ ∂R
and thus c is disconnected from R in H[N \ (C \ {c})]. This implies that for all r ∈ R, all paths

5

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

Algorithm 1
. Assumes that R ⊆ N , ∂R ⊆ C ⊆ N \R and |C| ≤ k + 1
function PRESOLVE(C,R)

if R = ∅
. Nowhere to go for robber→ cops win
return true

. Consider arbitrary component R′ of H[R]
r0 ← arbitrary element of R
R′ ← EXTRACTCOMPONENT(C, r0)

. Remove unnecessary cops from C ⊇ ∂R′ to obtain C ′ = ∂R′ (Lemma 2)
C ′ ← C
for c ∈ C

if for all r ∈ R′: INDTEST(c, C ′ \ {c}, r) = true
C ′ ← C ′ \ {c}

. If all k + 1 cops are needed, no advancements can be made→ cops lose
if |C ′| = k + 1

return false
. Otherwise |C ′| ≤ k and we can SOLVE the case
if SOLVE(C ′, R′) = false

return false
. Consider the rest of the components recursively
return PRESOLVE(C,R \R′)

. Assumes that ∅ 6= R ⊆ N , H[R] is connected, C = ∂R and |C| ≤ k
function SOLVE(C,R)

. Cops win if there is at least one winning advancement
for a ∈ R

if PRESOLVE(C ∪ {a}, R \ {a}) = true
return true

return false

. Assumes that C ⊆ N , |C| ≤ k + 1 and r0 ∈ N \ C
function EXTRACTCOMPONENT(C, r0)

. Find the component R of H[N \ C] containing node r0 (Lemma 3)
R← {r0}, Q← {r0}
while Q 6= ∅

r1 ← arbitrary element of Q
Q← Q \ {r1}
for r ∈ N \ (C ∪R)

if INDTEST(r, C, r1) = false
R← R ∪ {r}
Q← Q ∪ {r}

return R

6

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

between c and r in G are blocked by C \ {c}, and thus INDTEST(c, C \ {c}, r) is true.

Lemma 3 Let C ⊆ N , and define graph IC = (N \ C,EC) by

EC = {{u, v} : u, v ∈ N , u 6= v and INDTEST(u,C, v) = false}.

Now for each component IC [S] of IC , H[S] is a component of H[N \ C]. Consequently, we can
use graph search in IC to find components of H[N \ C] (as we do in EXTRACTCOMPONENT of
Algorithm 1).

Proof To prove the claim, we prove that for all pairs of adjacent nodes in IC there exists a path
between the nodes in H[N \C] and vice versa. The forward direction of the claim follows from the
fact that if {u, v} ∈ EC , then there exists a path between u and v in G not blocked by C, and thus
they are connected by a path in the residual moral graph H[N \ C].

For the other direction, assume that nodes u, v ∈ N \ C are adjacent in H . If they are adjacent
in G as well, then they are adjacent in IC . Otherwise, the edge between u and v has been added to
H due to moralization, and thus G contains a v-structure u → x ← v for some x ∈ N \ {u, v}.
If x ∈ C, then the path between u and v through x is not blocked by C and thus {u, v} ∈ EC .
Otherwise x ∈ N \ C and thus u and v are connected in IC through x.

The cyclic recursion between PRESOLVE and SOLVE eventually reaches the base case R = ∅
in PRESOLVE, because on each call from PRESOLVE to SOLVE, the set R does not increase, and
on each call from SOLVE to PRESOLVE as well as each call from PRESOLVE to itself, the set R
decreases strictly. However, a naive implementation of this recursion often does a lot of recompu-
tation, that is, the same function is called with the same arguments multiple times. To avoid this
recomputation, we memoize the results of the functions PRESOLVE and EXTRACTCOMPONENT as
well as the independence oracle INDTEST: the first time they are called with some arguments, the
return value is stored into a table, and on subsequent calls with the same arguments, the value stored
in the table is used instead of recomputing it.

For time complexity estimations, we assume that we can do elementary set operations on subsets
ofN in constant time. This assumption is reasonable, as in the typical usable range of this algorithm,
n is not vastly larger than the machine word size. We compute the time complexity of the algorithm
separately for each memoized function as the product of the number of possible arguments and the
time complexity of the function under the assumption that calls to memoized functions run in O(1)
time (as we can use a hash table to implement the memoization tables).

For PRESOLVE, there are O(nk+2) possible arguments (C,R), as there are O(nk+1) ways to
choose a setC ⊆ N with |C| ≤ k+1, andRmust be one of theO(n) components inH[N \ C]. As
the time complexity of a single call (excluding the calls to the memoized functions) is O(nk), the
total time complexity for PRESOLVE isO(nk+3k). For EXTRACTCOMPONENT, there areO(nk+2)
possible arguments (C, r0), and as the time complexity of a single call is O(n2), the total time
complexity is O(nk+4), which also subsumes the total time complexity of PRESOLVE.

The independence oracle INDTEST is only called for arguments (u, S, v) with |S| ≤ k+ 1, and
thus the number of independence queries is bounded by O(nk+3). The time complexity of each
independence query depends on the way the oracle is implemented. However, time complexity does

7

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

not depend on n and it is upper bounded by the number of samples and thus increasing k increases
time complexity only for small values of k. Thus, asymptotically we can treat time complexity of a
conditional independence test as a constant.

In the form presented in Algorithm 1, the algorithm only answers the question on whether
k+1 cops can always win the cops-and-a-robber game, or equivalently, whether H has treewidth at
most k. The algorithm can, however, be extended to produce a tree decomposition of width k as a
byproduct in the affirmative case. The tree decomposition is obtained from the part of the recursion
tree of the algorithm that causes the true return value; more exactly, from all SOLVE calls, we need
to remove all but the first PRESOLVE call that returns true. This recursion tree is converted into a
tree decomposition by converting each PRESOLVE(C,R) call into a bag containing nodes C.

The tree decomposition constructed this way covers all the nodes, because in the root PRE-
SOLVE call we have C = {v0} andR = N \{v0}, and in the PRESOLVE calls under it, R decreases
only by partitioning or adding a removed node to the set of cops C. The tree decomposition satisfies
the running intersection property, because for each PRESOLVE(C,R) call corresponding to a bag
with nodes C, the bags in the two subtrees under it contain only nodes from C and one of the parti-
tions R′ and R \R′ of R, and the nodes in R cannot appear in bags outside these subtrees. Because
|C| ≤ k + 1 in all the PRESOLVE calls, the width of the tree decomposition is k.

This extension of constructing the tree decomposition may be implemented either by making
the functions in Algorithm 1 return a pointer to the constructed tree decomposition subtree, or by
a separate postprocessing step which uses the memoization tables to trace the part of the recursion
tree that causes the true return value. Either way, the extension does not affect the time complexity,
and thus we obtain the following result.

Theorem 4 A tree decomposition of optimal width k can be found for the moral graph H in
O(nk+4) time and O(nk+3) calls to the independence oracle.

3.2 Postprocessing

From the algorithm of Section 3.1, we obtain a tree decomposition of width k for H consisting of
bags X = {X1, . . . , Xm}. By creating a graph in N where each bag Xi is a clique, we obtain a
supergraph of H . We extract the skeleton of G from the supergraph by removing the extra edges
based on the following observation: If nodes u, v ∈ N are not connected by an edge in G, then u
is not a parent or a descendant of v or vice versa (with u and v swapped). This means that by the
local Markov property, u and v are d-separated by one of the parent sets Au and Av in G. For any
x ∈ N , the set Ax ∪ {x} forms a clique in the moral graph H , and thus for some bag Xi it holds
that Ax ∪ {x} ⊆ Xi. Therefore we can check whether we should remove the edge between u and v
by running INDTEST(u, S, v) for all Xi ∈ X containing u or v and all subsets S ⊆ Xi \ {a, b}; the
edge should be removed if at least one query returns true.

After recovering the skeleton of G, we still need to orient some of its edges to construct the
CPDAG. We do this similarly to the PC algorithm (Spirtes et al., 2000). First, to orient the v-
structures of the graph, we consider each edge {u, v} removed in the previous phase. Let S ⊆ N
be the conditioning set that caused the removal, that is, INDTEST(u, S, v) returned true. For all
nodes x that are adjacent to both u and v in the skeleton but are not in S, we orient the edges to the
configuration u → x ← v. After orienting the v-structures, we complete the orientation by using
the Meek rules (Meek, 1995).

8

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

A graph whose treewidth is k has less than nk edges. Thus, the supergraph hasO(nk) edges, and
for each of them, we makeO(n2k) independence queries because |X| = O(n) and |Xi| ≤ k+1 for
all Xi ∈ X . The total time complexity of extracting the skeleton of G is thus O(n22kk). The time
complexity of the orientation phase can be loosely bounded by O(n5). In the whole postprocessing
phase, we only perform independence queries INDTEST(u, S, v) with |S| ≤ k, and there are only
O(nk+2) of them. Thus the time and independence query complexities of the postprocessing phase
are dominated by those of tree decomposition finding, and hence by Theorem 4 we obtain the
following result.

Theorem 5 The CPDAG of G can be learned in O(nk+4) time and O(nk+3) queries to the inde-
pendence oracle, where k is the treewidth of the moral graph H .

4. Experiments

While the main focus of this paper is in the theoretical results, we also assessed the practical per-
formance of the algorithm experimentally to validate the correctness of the algorithm and offer
pointers for further research. We made a C++ implementation3 of our algorithm, along with the PC
algorithm (Spirtes et al., 2000) that was used as a baseline for comparisons. We used the discrete
Bayesian networks in the bnlearn (Scutari, 2010) repository4 as benchmark instances.

Prior to running the other experiments, we verified that both the algorithm and the implemen-
tation are correct by checking that the implementation gives the correct result in a large number
of randomly generated Bayesian network structure DAGs of sizes at most 32 and varying densities
when the independence oracle is exact (given by d-separation in the DAG). We also checked that
the treewidth of the moral graph found by the algorithm matched that given by an external treewidth
solver (Tamaki, 2019).

4.1 Number of Independence Tests

As the sizes of the conditioning sets in the conditional independence queries increase, more data is
required to answer the queries accurately. For the performance of the structure learning algorithm,
the number of independence queries is also an important factor. Thus, we perform an experiment
where we measure the number of distinct independence tests of each conditioning set size our algo-
rithm and the PC algorithm uses on the benchmark instances. In this experiment, we use the exact
oracle, which means that both algorithms find the correct CPDAG (we also verified this). Neither
of the algorithms was given any external information such as the maximum size of the conditioning
sets.

Figure 1 shows the results of the experiment. In the larger instances, the number of queries is
in billions, and to keep the computational load reasonable, we limited the experiment to benchmark
networks with at most 128 nodes. Our algorithm typically performs more independence queries
than the PC algorithm, but in some instances (such as child, hailfinder and hepar2), the PC algorithm
needs much larger conditional independence tests than our algorithm as the treewidth is larger than
the maximum degree, while in some instances (such as water), the opposite happens.

3. https://github.com/ttalvitie/learning-bns-with-cops-and-robbers
4. https://www.bnlearn.com/bnrepository/

9

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

0 1 2 3 4 5
1

102

104

106

108

of
 in

de
p.

 q
ue

rie
s alarm

0 1 2 3

asia

0 1 2 3 4 5 6 7 8

barley

0 1 2 3

cancer

0 1 2 3 4 5 6 7

child

0 1 2 3

earthquake

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

102

104

106

108

of

 in
de

p.
 q

ue
rie

s hailfinder

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1

102

104

106

108 hepar2

0 1 2 3 4 5 6 7 8

1
102

104

106

108

of

 in
de

p.
 q

ue
rie

s insurance

0 1 2 3 4 5

mildew

0 1 2 3 4 5 6 7

pathfinder

0 1 2 3 4 5 6
size of conditioning set

sachs

0 1 2 3

survey

0 1 2 3 4 5 6 7 8 9 10
size of conditioning set

1
102

104

106

108

of

 in
de

p.
 q

ue
rie

s water

0 1 2 3 4 5 6 7 8 9
size of conditioning set

win95pts

our algorithm
PC algorithm

Figure 1: The number of independence tests of each conditioning set size our algorithm and the
PC algorithm uses in learning the benchmark networks with the exact oracle. Note that
the number of independence tests is shown on logarithmic scale. The results for one
of the algorithms is missing for pathfinder and win95pts; this caused by the algorithm
exceeding the 12 hour time limit. The last nonzero bar is always at treewidth plus one for
our algorithm and maximum degree minus one for the PC algorithm. Note that because
the counts are shown on log-scale and the differences are large, the height of the highest
bar gives a reasonable estimate for the order-of-magnitude of the total number of tests.

4.2 Structure Learning Accuracy on Generated Data

In real life, we do not have access to a perfect independence oracle. Thus, the previous experiment
does not show the behavior of the algorithm in the more realistic case that the independence tests
give sometimes incorrect results due to limited data. Therefore, for our second experiment, we
generate data from the benchmark network and use it to learn back the Bayesian network using
statistical independence tests (Pearson’s χ2-test with a significance level 0.05) for the independence
queries. Then we measure how close the learned network is from the generating network using the
structural Hamming distance (SHD).

To make sure that our algorithm terminates without cyclic recursion even when the indepen-
dence tests give erroneous results, we need to enforce the semi-invariant that the set of robbers R
decreases on recursive calls. We do this by setting R′ ← R′ ∩ R after obtaining the component R′

from EXTRACTCOMPONENT in the implementation of the PRESOLVE function in Algorithm 1.

10

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

0

10

20

30

40

50
st

ru
ct

ur
al

 H
am

m
in

g
di

st
. alarm

4

6

8

10 asia

40

60

80

barley

0

2

4

st
ru

ct
ur

al
 H

am
m

in
g

di
st

. cancer

0

10

20

30 child

0

2

4

6
earthquake

10

20

30

40

50

60

st
ru

ct
ur

al
 H

am
m

in
g

di
st

. insurance

30

40

50
mildew

26 28 210 212 214 216 218

number of data points

0

5

10

15

20 sachs

26 28 210 212 214 216 218

number of data points

0

2

4

6

8

st
ru

ct
ur

al
 H

am
m

in
g

di
st

. survey

26 28 210 212 214 216 218

number of data points

40

50

60

70 water

our algorithm
PC algorithm

Figure 2: The structural Hamming distance of the learned CPDAG compared to the CPDAG of the
generating network as a function of the number of data points. For each network and
number of data points, 25 datasets were generated. In the box plot, the box shows the
area between the lower and upper quartiles of the resulting SHD values, and the whiskers
show the minimum and maximum over all the 25 repetitions. Some boxes are missing,
because the algorithm exceeded the 6 hour time limit.

Figure 2 shows the SHD between the learned network and the correct network as a function
of the number of data points. As the independence tests are computationally intensive for large
datasets, we limited the experiment to networks with at most 50 nodes. For the question on which
algorithm learns the network more accurately, the results of this experiment are mixed. In some
cases, the high number of independence queries used by our algorithm makes it susceptible to
learning too sparse networks, as we get more false positives. For instance, in mildew and barley,
the algorithm learns almost empty networks even with hundreds of thousands (i.e., 217 and 218) of
data points. In alarm, as we increase the number of data points from 1024 to 2048, the maximum
conditioning set size typically increases from 3 to 4, which in turn causes the accuracy of the learned
netwoks to deteriorate because of the higher inaccuracy in the independence tests.

11

LEARNING BAYESIAN NETWORKS WITH COPS AND ROBBERS

5. Discussion

To our knowledge, our algorithm is the most efficient Bayesian network structure learning algorithm
with respect to the treewidth of the data-generating distribution. While our algorithm is interesting
from the theoretical point of view, it is not a great choice for a general purpose learning algorithm
in practice. While it may be competitive when the underlying Bayesian network has very low
treewidth, the algorithm becomes quickly inefficient when treewidth increases. As our experiments
showed, this happens often with typical Bayesian networks. The main source of inefficiency is
that in high treewidth distributions the algorithm has to try lots of conditioning sets unsuccessfully
before it finds separators.

References

C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and
Markov blanket induction for causal discovery and feature selection for classification part I: Al-
gorithms and empirical evaluation. Journal of Machine Learning Research, 11:171–234, 2010.

A. Chechetka and C. Guestrin. Efficient principled learning of thin junction trees. In Advances in
Neural Information Processing Systems (NIPS), 2007.

G. Elidan and S. Gould. Learning bounded treewidth Bayesian networks. Journal of Machine
Learning Research, 9:2699–2731, 2008.

J. Korhonen and P. Parviainen. Exact learning of bounded tree-width Bayesian networks. In Pro-
ceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, vol-
ume 31 of Proceedings of Machine Learning Research, pages 370–378, 2013.

C. Meek. Causal inference and causal explanation with background knowledge. In UAI’95: Pro-
ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 403–410,
1995.

M. Narasimhan and J. Bilmes. PAC-learning bounded tree-width graphical models. In UAI’04:
Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence, pages 410–
417, 2004.

M. Scutari. Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software,
35(3):1–22, 2010.

P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width. Journal of
Combinatorial Theory, Series B, 58(1):22–33, 1993.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2000.

H. Tamaki. Positive-instance driven dynamic programming for treewidth. Journal of Combinatorial
Optimization, 37(4):1283–1311, 2019.

X. Xie and Z. Geng. A recursive method for structural learning of directed acyclic graphs. Journal
of Machine Learning Research, 9:459–483, 2008.

12

	Introduction
	Related Work

	Preliminaries
	Bayesian Networks
	Treewidth

	Algorithm
	Learning the Tree Decomposition
	Postprocessing

	Experiments
	Number of Independence Tests
	Structure Learning Accuracy on Generated Data

	Discussion

