
Staged Tree Algorithm

Constructing a Chain Event Graph from a Staged Tree

Aditi Shenvi 1,2 a.shenvi@warwick.ac.uk

Jim Q. Smith 1,2 j.q.smith@warwick.ac.uk
1 University of Warwick, Coventry, United Kingdom
2 The Alan Turing Institute, London, United Kingdom

Abstract
Chain Event Graphs (CEGs) are a recent family of probabilistic graphical models - a generalisation
of Bayesian Networks - providing an explicit representation of structural zeros, structural missing
values and context-specific conditional independences within their graph topology. A CEG is con-
structed from an event tree through a sequence of transformations beginning with the colouring of
the vertices of the event tree to identify one-step transition symmetries. This coloured event tree,
also known as a staged tree, is the output of the learning algorithms used for this family. Sur-
prisingly, no general algorithm has yet been devised that automatically transforms any staged tree
into a CEG representation. In this paper we provide a simple iterative backward algorithm for this
transformation. Additionally, we show that no information is lost from transforming a staged tree
into a CEG. Finally, we demonstrate that with an optimal stopping criterion, our algorithm is more
efficient than the generalisation of a special case presented in Silander and Leong (2013). We also
provide Python code using this algorithm to obtain a CEG from any staged tree along with the
functionality to add edges with sampling zeros.
Keywords: Chain event graphs; event trees; context-specific independence; structural zeroes;
structural missing values; directed graphical models; conditional independence.

1. Introduction

Many real-world processes contain non-symmetric sample space structures. Examples of such pro-
cesses can be frequently found in public health, medicine, risk analysis and policing (see Collazo
et al. (2018)). Such asymmetries may arise due to the existence of structural zeros and structural
missing values (collectively referred here as structural asymmetries) in the sample space of a vari-
able conditional on the realisation of other variable(s). A structural zero refers to observing zero
frequencies for a count variable or a category of a categorical variable when a non-zero observation
is a logical impossibility rather than a sampling limitation (e.g. days or amount as low, medium,
high of alcohol consumption by teetotallers). Structural missing value are observations which are
missing as they are not defined for a subset of the individuals/units (e.g. variables relating to post-
operative health of individuals who had the illness but weren’t operated). It is easy to see how such
asymmetries may give rise to context-specific conditional independences which are independence
relationships of the form X y Y |Z = z1 but X 6y Y |Z = z2 where y stands for probabilistic inde-
pendence and the vertical bar shows conditioning variables on the right. In fact, context-specific
independences regularly arise naturally in many applications (Zhang and Poole, 1999).

Graphical models such as Bayesian Networks (BNs) are unable to fully describe asymmetric
processes. They are primarily stymied in this respect as they force the process description on a
set of variables that are defined a priori. Indeed, in order to scale up BN methodologies to large
problems, good BN software contain functions that copy parts of one conditional probability table

1

Shenvi and Smith

to another. Thus BNs implicitly embed context-specific independences through probability assign-
ments within their conditional probability tables. However, this structural information is never
explicitly represented in their topologies. Uncovering these independences requires serious modi-
fications (typically involving trees in some form) to their standard representation and/or inferential
process (Boutilier et al., 1996; Zhang and Poole, 1999; Jabbari et al., 2018). Additionally, structural
zeros too are hidden away in their conditional probability tables.

Chain Event Graphs (CEGs) are a family of probabilistic graphical models whose graphical
representation make structural asymmetries and context-specific conditional independences explicit
(Collazo et al., 2018). CEGs contain the class of finite discrete BNs as a special case (Smith and
Anderson, 2008). They are constructed from event trees which provide a natural and intuitive frame-
work for describing the unfolding of a process through a sequence of events. Although the size of an
event tree increases linearly with the number of events involved in the evolution of the process which
may become unwieldy for large complex processes, they are nonetheless easy for the statistician to
transparently elicit from the natural language descriptions of a domain expert. Embedding structural
asymmetries within an event tree is a matter of simply not drawing the corresponding branch in the
tree (Shenvi et al., 2018). However, a more compact representation of an event tree while retaining
its properties and transparency is desirable. A CEG provides such a compact representation. Hence
it is a powerful modelling tool for processes exhibiting significant asymmetries, particularly in do-
mains such as medicine (Barclay et al., 2013), public health (Shenvi et al., 2018), forensic science
(Collazo et al., 2018) where experts often offer event based descriptions of processes.

To obtain a CEG, an event tree is first transformed into a staged tree by colouring its vertices to
represent symmetries within its structure. The vertices of the staged tree are then merged to provide
a more concise representation of these symmetries in the form of the graph of a CEG. Such a trans-
formation results in a much simpler graph often with an order of magnitude fewer vertices and edges
than the generating tree. Like an event tree, a CEG also describes a process through a sequence of
events and thus inherits the ability to graphically represent structural asymmetries. A CEG repre-
sentation is especially useful because various implicit conditional independences, including of the
context-specific nature, hidden within the patterns of colouring of the tree can be read directly from
its topology using sets of events called cuts and fine cuts (Smith and Anderson, 2008).

Several fast learning algorithms now exist for the CEG (Freeman and Smith, 2011; Silander and
Leong, 2013; Cowell and Smith, 2014). The output of these algorithms is a staged tree. A staged
tree typically must go through a sequence of non-trivial transformations before it represents the
graph of a CEG. In fact, a CEG is uniquely defined by its staged tree, and we show that the staged
tree can be recovered from the graph of the CEG alone.

Silander and Leong (2013) present an algorithm to transform a stratified staged tree into a
stratified CEG (SCEG). A stratified staged tree/ SCEG is one in which events broadly corresponding
to the same variable are at the same distance from a leaf/ the sink. Intuitively this corresponds to
there being no events which become redundant conditional on the past events that have occurred.
SCEGs have been studied extensively as any process that can be represented by a finite discrete BN
can also be represented within this wider class. In particular, the advantages of the CEG over a BN
can be demonstrated (Barclay et al., 2013). However, we are increasingly finding many applications
where the CEG representation is not stratified (Shenvi et al., 2018; Shenvi and Smith, 2019). So it
is timely that automatic algorithms are available to make this transformation for any staged tree.

The contribution of our paper is threefold. First we provide an algorithm that can transform any
staged tree into a CEG and provide an optimal stopping criterion for this algorithm. Secondly, we

2

Staged Tree Algorithm

prove that the transformation of a staged tree into a CEG does not lead to the loss of any information.
Lastly, we provide Python code (https://github.com/ashenvi10/Chain-Event-Graphs) that
obtains a staged tree using an Agglomerative Hierarchical Clustering (AHC) algorithm and then
transforms it into a CEG using our algorithm. Unlike the existing ‘ceg’ (Collazo and Taranti, 2017)
and ‘stagedtrees’ (Carli et al., 2020) R packages, our code is not restricted to SCEGs and it also
allows manual addition of edges with sampling zeros.

In Section 2 we review the notation and the preliminary concepts. In Section 3 we present a
simple recursive backward algorithm - coded within supporting software - that can construct a CEG
from any staged tree. Here we also prove some properties of the algorithm and of the transformation
itself. In Section 4 we compare an adapted version of the algorithm presented in Silander and Leong
(2013) to our algorithm. We conclude the paper with a short discussion in Section 5.

2. Notation and Preliminaries

A CEG construction begins by eliciting an event tree of a process either from a domain expert or
from existing literature. Alternatively, it can be constructed directly from data. Below we outline
the transformations an event tree goes through to obtain the graph of a CEG:

• Vertices in the event tree whose one step ahead evolutions, i.e. conditional transition proba-
bilities, are equivalent are assigned the same colour to indicate this symmetry;

• Vertices whose rooted subtrees (the subtree formed by considering that vertex as the root) are
isomorphic - in the structure and colour preserving sense - are merged into a single vertex
which retains the colouring of its merged vertices;

• All the leaves of the tree are merged into a single vertex called the sink.

Example 1 Here we consider a simplified topical example. The staged tree in Figure 1 shows a
hypothesised example of testing for a certain disease available to individuals exhibiting symptoms
in three different settings: hospitals, care homes and in the general community. For simplicity,
we assume here that the test is 100% sensitive and specific, and that we are only interested in the
outcomes related to the disease. By “recovery∗” we collectively refer to those who recover and those
who never had the disease. We further assume that death can only be caused by the disease in the
time period considered. The coloured vertices represent equivalence of their conditional transition
probabilities. For instance, the probability of dying is the same for individuals in hospitals and care
homes who exhibit symptoms but do not get a test. The CEG for this staged tree is shown in Figure
2. It is not hard to see how this tree can be refined to be more realistic.

Let T denote an event tree with a finite vertex set V(T) and an edge set E(T). An edge e ∈ E(T)
from vertex v to vertex v′ with edge label l is an ordered triple given by (v, v′, l). Denote by L(T)
the set of leaves in T . The non-leaf vertices in T are called situations and their set is denoted by
S (T) = V(T)\L(T). The set of children of a vertex v are denoted by ch(v). Let ΦT = {θθθv|v ∈ V(T)}
where θvθvθv = (θ(e)|e = (v, v′, l) ∈ E(T), v′ ∈ V(T)) denotes the parameters for each vertex v ∈ V(T).

Two situations v and v′ are said to be in the same stage whenever θθθv = θθθv′ and if θ(e) = θ(e′)
then e = (v, ·, l) and e′ = (v′, ·, l) for edge e emanating from v and e′ emanating from v′. The
latter condition states that the edges emanating from situations in the same stage which have the
same estimated conditional transition probability must also share the same edge label. Note that

3

https://github.com/ashenvi10/Chain-Event-Graphs

Shenvi and Smith

Figure 1: Staged tree for Example 1

Figure 2: CEG for Example 1

when edge labels are not fixed, this condition is relaxed. In this case, edges of vertices in the same
stage are coloured to represent which edges share the same conditional transition probabilities. This
allows the statistician and domain expert to retrospectively assign labels to events which have the
same meaning but which could have initially been assigned different labels.

Example 1 (Continued) The domain expert may decide that the edge labels “recovery” and “recovery∗”
can be treated as equivalent. Then situations v9 and v18 would be in the same position.

The collection of stages U partitions V(T). Each stage u ∈ U is a set of situations in V(T) that
belong to the stage u. Stage memberships are represented by colouring the situations of T such that
each stage u ∈ U is represented by a unique colour. An event tree whose situations are coloured
according to their stage memberships is called a staged tree and is denoted by S 1. Situations in
the staged tree whose rooted subtrees are isomorphic 2 have equivalent sets of parameters. That is,

1. Note that for simplicity, like in Figures 1 and 2, the colouring of the trivial stages may be suppressed.
2. In this paper isomorphism is in a structure and colouring preserving sense.

4

Staged Tree Algorithm

for two isomorphic subtrees S′ and S′′ rooted at v and v′, ΘS′ = ΘS′′ . In a non-technical sense,
this implies that v and v′ have identical future evolutions. Situations whose rooted subtrees are
isomorphic belong to the same position. The collection of positionsW is a finer partition of V(T)
and each position w ∈ W is a set of situations of V(T) that belong to the position w. Merging the
situations in S which are in the same position and collecting all the leaves in L(S) into a sink node
denoted by w∞ result in the graph of a CEG C for the process being modelled. Thus a CEG is
uniquely defined by its staged tree, or in other words, it is uniquely defined by the pair (T ,U) where
T is its underlying event tree and U is the set of stages.

Definition 1 (Chain Event Graph) A Chain Event Graph (CEG) C = (V(C), E(C)) of a process
represented by a staged tree S = (V(S), E(S)) with set of parameters ΘS is a directed acyclic graph
with V(C) = W ∪w∞ where W is a set constructed by choosing a representative situation from each
set in the collection 3 W. The edges in C are constructed as follows: For a w ∈ W, create an edge
(w,w′, l) ∈ E(C) for every edge (w, s′, l) ∈ E(S), with θθθCw = θθθSw where s′ belongs to a set inW which
is represented by w′ in W. Additionally, w ∈ V(C) retains the colouring of w ∈ V(S).

A floret of a vertex v in a directed graph is denoted by F(v) = (V(F(v), E(F(v))) where V(F(v)) =

{v ∪ ch(v)} and E(F(v)) is the set of edges induced by V(F(v)) in the graph. Denote the set of root-
to-sink (root-to-leaf) paths in a CEG C (event tree T /staged tree S) by CΛ (TΛ / SΛ) where a path
is a sequence of tuples of the form (‘vertex colour’, ‘edge label’) from the root vertex to the sink
following the directed edges. Say that an event tree, staged tree or a CEG is stratified whenever the
vertices representing the same type of event (e.g. severity of illness) have the same number of edges
between them and the root vertex along any path connecting them, and otherwise say it is non-
stratified. Non-stratified CEGs provide a more realistic representation of a wide range of processes
containing structural asymmetries (see e.g. Shenvi et al. (2018); Shenvi and Smith (2019)).

2.1 Why not just Staged Trees?

Staged trees are a graphical representation of a parametric statistical model and encapsulate within
their colouring conditional independence information about the events describing a process (Görgen
and Smith, 2016, 2018). So why do we need CEGs when staged trees are themselves powerful tools?

While we show that staged tree and CEG representations are equivalent, the graph of a CEG
is simpler and more compact. Typically, a CEG contains far fewer vertices and edges than its
corresponding staged tree. Let Vk ⊆ V(T) denote the vertices of an event tree T with k outgoing
edges and let nk = |Vk|. Then T has n(T) =

∑d
k=0 nk vertices and k(T) =

∑d
k=1 knk edges where

d = max{k : nk ≥ 0}. When a CEG C partitions Vk into 1 ≤ mk ≤ nk positions, it is trivial to check
that it has n(C) =

∑d
k=1 mk + 1 vertices (including the sink) and k(C) =

∑d
k=1 kmk edges. So we have

n − 1 ≤ n(T) − n(C) =
∑d

k=1 (nk − mk) + n − 1 ≤
∑d

k=0 (nk − 1) ,

0 ≤ k(T) − k(C) =
∑d

k=1 k (nk − mk) ≤
∑d

k=1 k (nk − 1) ,

where n = |L(T)|. Let m = max {|λ| : λ ∈ TΛ} be the length (i.e. number of tuples) of the longest
root-to-leaf path of T . It is easy to check that n(T) and k(T) typically increase as a power of m,
whilst when its CEG expresses many symmetries n(C) and k(C) increase linearly in m. In fact, for
dynamic processes, the staged tree is infinite but the corresponding CEG might be finite (Shenvi

3. Notice that U andW are sets of sets and to disambiguate, we refer to sets of sets as collections in this paper.

5

Shenvi and Smith

and Smith, 2019). Crucially, while there now exists a d-separation theorem (to be reported soon) for
CEGs, such methodologies are yet to be developed for staged trees. Note that there is an interesting
framework called conditional independence trees (Su and Zhang, 2005; Zhang and Su, 2004) which
decompose decision trees into subtrees by exploiting the conditional independence relationships
(including those of the context-specific nature) exhibited by the process. However, these are not yet
fully developed and have been primarily used for improving prediction on classification problems.

3. A Recursive Algorithm to Construct a CEG

We present a simple recursive backward algorithm for constructing the graph of a CEG C from any
staged tree S irrespective of whether it is stratified. While a variety of model selection techniques
exist for the CEG family (Freeman and Smith, 2011; Silander and Leong, 2013; Cowell and Smith,
2014), we do not discuss these in this paper. The outcome of any model selection algorithm for a
CEG is a collection of stages U for its underlying event tree. The vertices of the event tree can be
coloured according to U; giving us the associated staged tree. Here we assume that we are only
given the staged tree - obtained either as an output of a model selection algorithm or elicited by
domain experts - from which we can deduce the collection of stages U. The collection U and the
topology of the staged tree are then used to iteratively identify the collection of positions.

The recursion progressively melds situations together according to the position structure incre-
mentally more distant from the leaves of the staged tree S. This produces a sequence of coloured
graphs G0 = S,G1, . . . ,Gm = C where m is the depth of S. Each graph in the sequence has the same
root-to-leaf/sink paths, that is G0Λ = G1Λ = . . . = GmΛ, and the following relationship holds

|V(Gi)| ≥ |V(Gi+1)|, |E(Gi)| ≥ |E(Gi+1)|; i = 0, 1, . . . ,m − 1.

We specify our construction by writing the vertex and edge sets of each graph Gi as a function of
the vertex and edge sets of the graph Gi−1. Note that the vertices in Gi retain their colouring from
the graph Gi−1. Henceforth, we will say Gi = G j, i , j, whenever the two graphs Gi and G j are
isomorphic. Say that a vertex v is at a distance k from the sink vertex w∞ (or equivalently, a leaf in
a tree) if the shortest directed path from v to the sink (or a leaf) contains k tuples. Let V−k be the set
of vertices in a given graph such that every v ∈ V−k is at a distance of k from the sink vertex w∞ (or
a leaf) of the graph. We describe our iterative algorithm below.
Step 1: Initialisation. From G0 = S where S is the staged tree, define the following:

ν−1
M
= L(G0), ν+

1
M
= {w∞},

ε−1
M
= {e ∈ E(G0) : e = (v, v′, l) where v ∈ S (G0), v′ ∈ L(G0)},

ε+
1
M
= {σ1(e) : e ∈ ε−1 },

where σ1(e) = σ1(v, v′, l) M= (v,w∞, l). Graph G1 = (V(G1), E(G1)) where

V(G1) M= V(G0)\ν−1 ∪ ν
+
1 , E(G1) M= E(G0)\ε−1 ∪ ε

+
1 .

Step 2: Generalisation. To construct graph Gi from Gi−1, i ≤ m, proceed as follows:

1. Create a sub-collection Ui = {u1i, . . . , umii} informed by the collection of stages U such that each
situation v ∈ V−(i−1) belongs to only one set u ji ∈ Ui for some j = 1, . . . ,mi, and two situations
v, v′ ∈ V−(i−1) belong to the same set u ji if and only if there exists a stage u ∈ U such that v, v′ ∈ u.
Thus, the collection Ui gives us the stage structure for the vertices in V−(i−1).

6

Staged Tree Algorithm

2. Construct a collection U∗i such that each u ji ∈ Ui is replaced in U∗i by the sets u1
ji, . . . , u

n ji
ji , n ji ≥ 1.

Each situation v ∈ u ji belongs to only one set uk
ji for some k = 1, . . . , n ji, and two situations

v, v′ ∈ u ji belong to the same set uk
ji if and only if there exists an edge (v′, v′′, l) ∈ E(Gi−1)

for every edge (v, v′′, l) ∈ E(Gi−1). Thus, we have that uk
ji ∩ ul

ji = ∅, k , l, ∪kuk
ji = u ji, and

U∗i = ∪ j ∪k uk
ji. The collection U∗i partitions the situations in V−(i−1) into positions.

3. Define the following terms for each uk
ji, j = 1, . . . ,mi, k = 1, . . . , n ji,

ν−(uk
ji)
M
= uk

ji, ν+(uk
ji)
M
= {v} for some v ∈ ν−(uk

ji).

We now define the following terms to enable us to construct the vertex and edge sets of Gi,

ν−i
M
= ∪ j ∪k ν

−(uk
ji), ν+

i
M
= ∪ j ∪k ν

+(uk
ji),

ε
f
i
M
= {e ∈ E(Gi−1) : e = (v, v′, l) where v ∈ ν−i \ν

+
i },

εb
i
M
= {e ∈ E(Gi−1) : e = (v, v′, l) where v′ ∈ ν−i \ν

+
i },

ε−i
M
= ε

f
i ∪ ε

b
i , ε+

i
M
= {σi(e) : e ∈ εb

i },

where σi(e) = σi(v, v′, l)
M
= (v, v′′, l) in which v′′ ∈ ν+(uk

ji) for v′ ∈ ν−(uk
ji), k = 1, . . . , n ji. Setting

V(Gi)
M
= V(Gi−1)\ν−i ∪ ν

+
i and E(Gi)

M
= E(Gi−1)\ε−i ∪ ε

+
i gives us the graph of Gi.

We now prove that the above construction of U∗i does in fact result in a collection of positions of the
vertices in V−(i−1). The associated theorem is stated below with a proof in Appendix A.1.

Theorem 1 Given graph Gi−1, i ≤ m in the sequence of graphs transforming a staged tree G0 = S

to a CEG Gm = C, two situations v1, v2 ∈ V−(i−1) are in the same position if and only if they belong
to the same stage and for every (v1, v′, l) there exists a (v2, v′, l) in Gi−1.

We now show that the recursion may in fact be stopped for some 0 < r < m. This optimal stopping
point for the recursion is given in Theorem 2 with proof in Appendix A.2.

Theorem 2 (Optimal stopping) In the sequence of graphs transforming a staged tree G0 = S to a
CEG Gm = C and m ≥ 2 where m is the depth of S, the earliest stopping time in this transformation
that guarantees the required CEG C is the recursion step r such that Gr = Gr−1 , Gr−2, 0 < r < m.

Theorem 3, with proof in Appendix A.3 implies that for every staged tree there is a unique CEG
and also that the staged tree can be recovered given this CEG. This is equivalent to saying that no
information is lost in transforming a staged tree into a CEG.

Theorem 3 (Preservation of information) The mapping from a staged tree to a CEG is bijective.

3.1 Related Work

Silander and Leong (2013) presented an algorithm to learn a stratified staged tree and to transform
it into an SCEG (although the stratified terminology was not used). Their algorithm is a special case
- albeit with no early stopping criterion - of the general algorithm we presented in Section 3.

They define the structure of a CEG for n-dimensional data as a “layered directed acyclic graph
with n + 1 layers”. They assumed that the vertices in layer k correspond to the same variable, say

7

Shenvi and Smith

Xk. They also assume that from each vertex in layer k, there are exactly rk emanating edges, all
entering vertices in layer k + 1. The stratified staged tree to SCEG transformation algorithm states a
weaker form of Theorem 1 without a proof and carries out a backward iteration from one layer to the
previous one, all the way to the root, by merging situations which satisfy Theorem 1. However, it
is easy to see that using their definition of layers, this algorithm fails for non-stratified CEGs where
events don’t necessarily satisfy a symmetric product space structure.

We adapt their algorithm so that layer k in their algorithm corresponds to what we defined as set
V−k in Section 3. The main differences between the adapted version of their algorithm and ours is
that (1) we provide an optimal stopping criterion which saves on computational effort of searching
the entire staged tree, (2) we provide all the necessary proofs for our algorithm. For convenience,
call their adapted algorithm the baseline algorithm and ours the optimal time algorithm.

4. Experiments

Here we compare the performance of the baseline and optimal algorithms on 7 datasets. The first
four datasets are from the UCI repository (Dua and Graff, 2019). The missing values were removed
and sampling zeros were treated as structural. The fifth dataset is from the Christchurch Health and
Development Study (CHDS) conducted at the University of Otago, New Zealand (see Fergusson
et al. (1986)). The penultimate dataset is from Shenvi et al. (2018) and its asymmetric nature can
be seen from the CEG in Figure 3 in that paper. The final dataset is an extension of this dataset
and has been used in Shenvi and Smith (2019). The last two datasets have structural zeroes and so,
they are not stratified and do not have symmetric product space structures. The remaining datasets
are stratified. It has also been shown that the last three datasets exhibit context-specific conditional
independences (Collazo et al., 2018; Shenvi et al., 2018; Shenvi and Smith, 2019).

These experiments were carried out using our Python code 4 on a 2.9 GHz MacBook Pro with
32GB memory. Our code can handle datasets with structural asymmetries (stored as NaNs or null
values) and also provides the capability to manually add sampling zero paths to the tree. It is
currently set up to learn the staged tree from the event tree of the dataset using the AHC algorithm.

Dataset |S (S)| Depth m TBaseline |V(CBaseline)| TOptimal
∣∣∣V(COptimal)

∣∣∣
Iris 52 5 1.635 42 1.414 42
Hayes-Roth 124 5 12.118 58 12.085 58
Balance scale 327 5 145.052 90 143.321 90
Glass 636 10 389.272 308 376.689 308
CHDS 19 4 0.586 10 0.556 10
Falls 39 6 1.564 27 1.453 27
Falls dynamic 346 5 585.789 242 550.990 242

Table 1: Comparison of the baseline algorithm and the optimal time algorithm.

Table 1 gives for each dataset the number of situations in the staged tree output by the AHC
algorithm (|S (S)|), the maximum depth of the staged tree (m) and the time taken (in milliseconds)
by the two compacting algorithms (TBaseline and TOptimal) as well as the number of positions in the
resulting CEG found by the two algorithms (|V(CBaseline)| and

∣∣∣V(COptimal)
∣∣∣). From this table we

4. https://github.com/ashenvi10/Chain-Event-Graphs

8

https://github.com/ashenvi10/Chain-Event-Graphs

Staged Tree Algorithm

can see that the optimal time algorithm takes less time than the baseline algorithm while arriving
at the same CEG as it stops as soon as Theorem 2 is satisfied. However, the gain in efficiencies
are inversely proportional to the number of symmetries exhibited by the process (see Section 2.1).
Thus, if there are more symmetries (more situations in non-trivial stages) across the tree, we need
to search across more V−k sets before we arrive at the CEG.

5. Discussion

We have provided a simple iterative backward algorithm along with supporting Python code to
transform any staged tree into a CEG. Research in CEGs and their applications has been an increas-
ingly active field in recent years. However, such a general algorithm and proofs of the validity of
the staged tree to CEG transformation have been missing in the literature so far. We know through
personal correspondence that, a soon to be published, d-separation theorem for CEGs has been de-
veloped. Construction of the minimal ancestral CEGs in this theorem follows the same procedure
as our algorithm. Hence, automating this process, as we have done, is a very timely development.

Acknowledgments

We would like to thank John Horwood and the CHDS research group for the CHDS dataset. We
would also like to thank the reviewers whose insightful comments greatly improved the original
version. AS was supported by the University of Warwick Chancellor’s International Scholarship
and the Alan Turing Institute. JQS was supported by the Alan Turing Institute and funded by the
EPSRC [grant number EP/K03 9628/1].

Appendix A. Proofs

A.1 Proof for Theorem 1

We have a graph Gi−1 belonging to the sequence of graphs converting a staged tree S into a CEG C.
This implies that all the vertices in V− j, j = 1, . . . , i − 2 in Gi−1 represent positions.
⇒ Given that two situations v1, v2 ∈ V−(i−1) are in the same position. We show that (1) v1 and

v2 belong to the same stage; (2) for every (v1, v′, l) there exists a (v2, v′, l) in Gi−1.
If v1 and v2 are in the same position, it is trivially true that they are also in the same stage.

Additionally, by the definition of a position, the subtrees rooted at v1 and v2, call them Sv1 and Sv2

in the staged tree S are isomorphic. Thus also, for every subtree rooted at a child of v1 in Sv1 , there
exists an isomorphic subtree rooted at a child of v2 in Sv2 . In fact, stages by definition require that
edges with the same estimated conditional transition probability must also have the same edge label.
Therefore, there necessarily exists a situation vch

2 along edge (v2, vch
2 , l) such that the subtree rooted

at vch
2 is isomorphic to the subtree rooted at situation vch

1 which is along the edge (v1, vch
1 , l). Notice

that vch
1 and vch

2 belong to the set V−(i−2) in Gi−2. Since their rooted subtrees in S are isomorphic,
they belong to the same position and are represented by a single vertex, say vch

1,2 in Gi−1. The edges
(v1, vch

1 , l) in Sv1 and (v2, vch
2 , l) in Sv2 are represented by edges (v1, vch

1,2, l) and (v2, vch
1,2, l) in Gi−1.

This result extends to every (v1, v′, l) in Gi−1.
⇐Given that v1, v2 ∈ V−(i−1) in Gi−1 belong to the same stage and for every (v1, v′, l) there exists

a (v2, v′, l) in Gi−1. We need to show that v1 and v2 are in the same position.

9

Shenvi and Smith

Recall that two situations are in the same position when the subtrees rooted at these vertices in
S are isomorphic. Since v1 and v2 are in the same stage, they have the same number of emanating
edges and also, the edges from v1 and v2 which share the same edge label have the same estimated
conditional transition probability. Consider edges (v1, vch

1,2, l) and (v2, vch
1,2, l) emanating from situa-

tions v1 and v2 in Gi−1 respectively where vch
1,2 is the common situation along these two edges. In a

tree each vertex has at most one parent. So in the staged tree S, the position vch
1,2 would be repre-

sented by two separate vertices, call them vch
1 and vch

2 in the subtrees rooted at v1 and v2 respectively.
Thus, the edge (v1, vch

1,2, l) would be replaced by an edge (v1, vch
1 , l) in the subtree rooted at v1, call

this Sv1 in S. Similarly, the edge (v2, vch
1,2, l) would be replaced by an edge (v2, vch

2 , l) in Sv2 which is
the subtree rooted at v2 in S. Since vch

1 and vch
2 are in the same position inGi−1, they have isomorphic

subtrees in Sv1 and Sv2 . Similarly, the subtrees rooted at the children of v1 and v2 in Sv1 and Sv2

respectively are isomorphic whenever the edges from v1 and v2 to their respective children share the
same edge label. Since v1 and v2 are in the same stage, the florets F(v1) in Sv1 and F(v2) in Sv2 are
also isomorphic. Thus Sv1 and Sv2 are isomorphic and hence, they belong to the same position.

A.2 Proof for Theorem 2

Suppose that 0 < r < m recursions have taken place and Gr = Gr−1 , Gr−2. We show that
Gr = C. As the graph of a CEG is the most parsimonious representation of the event tree describing
a process, this is equivalent to showing that |V(Gr)| = |W|+1 whereW is the collection of positions.
Graph Gr−1 contains the positions for all situations in V−k, 0 ≤ k < r − 1. Since Gr = Gr−1, the
problem can be framed as showing that if there are no non-trivial positions in V−(r−1) then there are
no non-trivial positions in any of V−k, r ≤ k ≤ m. We prove this by contradiction.

Let there be no non-trivial positions in V−(r−1). Suppose that two situations v1, v2 ∈ V−r are in
the same position and hence, the same stage. This implies that the subtrees of S rooted at v1 and v2,
say Sv1 and Sv2 respectively are isomorphic. Let vch

1 be a child of v1 along the edge (v1, vch
1 , l) and

let Svch
1

be the subtree rooted at vch
1 . By the definition of a stage, there exists an edge (v2, vch

2 , l) in Sv2

with rooted subtree Svch
2

. The subtrees Svch
1

and Svch
2

are isomorphic as Sv1 and Sv2 are isomorphic.
By the definition of a position, vch

1 and vch
2 are in the same position. As v1, v2 ∈ V−r, we have

that vch
1 , v

ch
2 ∈ V−(r−1). This contradicts that there are no non-trivial positions in V−(r−1). A similar

argument can be made for any v1, v2 ∈ V−k, r ≤ k ≤ m. Since Gr = Gr−1, V−(r−1) has no non-trivial
positions and all the positions in V−k, 0 ≤ k < r have been identified. By the above result, V−k,
r ≤ k ≤ m also do not contain any non-trivial positions. Thus Gr = C.

We have that Gr−2 , Gr−1 = Gr = . . . = Gm = C. While stopping at graph Gr−1 gives us the
required graph of the CEG, this recursive step is indistinguishable from any of the other k < r − 1
steps. Hence, the isomorphism of Gr−1 and Gr is needed to stop the recursions with certainty. Thus
the earliest stopping point for the recursion is step r such that Gr = Gr−1 , Gr−2, 0 < r < m.

A.3 Proof for Theorem 3

We prove bijection by proving injection and surjection.
Injection: We prove the injective contrapositive; that is, given staged trees S1 , S2, we show

that their corresponding CEGs C1 and C2 are not isomorphic. It is straightforward to show that if
S1 and S2 are structurally not isomorphic, then C1 , C2. Suppose that S1 and S2 are structurally
isomorphic and that they differ only in the colouring of one of their vertices. Let these vertices be

10

Staged Tree Algorithm

v1 with colour c1 in S1 and v2 with colour c2 , c1 in S2. Since vertices retain their colouring in the
CEG, the positions representing v1 and v2 in C1 and C2 will be coloured by c1 and c2 respectively.
Hence, C1 and C2 will not have colour preserving isomorphism. Additionally, C1 and C2 will not be
structurally isomorphic if either or both of v1 and v2 create non-trivial positions in their respective
staged trees as the collection of positions in S1 and S2 will not be equivalent.

Surjection: From a given CEG C, construct a staged tree S as follows:
1. Sort the paths in CΛ in ascending order of the length (number of tuples) of the paths.

2. For each path {(c, l)} of length 1 where c is a colour and l is an edge label, construct an edge from
v0, the root of S to a new vertex (labelled as vi where i is an integer index which hasn’t been
assigned thus far in the construction) and label it l. Assign colour c to v0.

3. In general, for any path of length k given by {(c1, l1), . . . , (ck−1, lk−1), (ck, lk)}, there necessarily
exists a path {(c1, l1), . . . , (ck−1, lk−1)} ending in a vertex, say vk−1 in the staged tree constructed
so far. To add the kth tuple (ck, lk) to this path, colour vk−1 by ck, add a vertex vk and construct a
directed edge from vk−1 to vk with edge label lk.
This construction results in a tree as it is connected (no vertex - with the exception of the root -

is added until it is connected by an edge to an existing vertex) and has no directed cycles (each edge
is constructed from an existing vertex to a new vertex). Call this tree T ∗. We prove that T ∗ is the
unique staged tree whose transformation, as described in Section 3, results in our given CEG C.

Observe that a staged tree in uniquely and unambiguously defined by its underlying event tree
and its collection of stages U. The structure of any event tree can be recovered from its set of un-
coloured root-to-leaf paths, which is equivalent to the uncoloured root-to-sink paths CΛ of the CEG
C. As T ∗ is constructed from the set CΛ, the uncoloured version of T ∗ is the required underlying
event tree for C. The vertices of T ∗ inherit their colourings from the positions of C. Recall that
colouring of positions in a CEG is indicative of stage memberships. Hence, two positions w and w′

with the same colour, say c in C are in the same stage. By definition of a stage, θθθw = θθθw′ , and for
each edge e = (w, ·, l) there exists an e′ = (w′, ·, l) such that θ(e) = θ(e′) in C. Two vertices v and v′

with the colour c in T ∗ either belong to the same position in C - without loss of generality assume
this is w - or belong to two distinct positions in C, assume these are w and w′. If both v, v′ belong
to position w, then v and v′ in T ∗ are created from two separate root-to-w subpaths, say p and p′ in
C. Floret F(v) is formed by creating k copies of subpath p and appending each with a distinct (c, li)
where i = 1, . . . , k and li is the label of the ith edge emanating from w in C. Floret F(v′) is con-
structed in a similar manner. Thus v and v′ have the same number of emanating vertices in T ∗ and
share the same vertex colour as they satisfy the conditions of being in the same stage by belonging
to the same position in C. This also holds when v and v′ belong to positions w and w′ respectively,
where w and w′ share the same colour in C, with the exception that p will be a root-to-w subpath
and p′ a root-to-w′ subpath. Thus T ∗ is the underlying staged tree of C as it has the structure of the
event tree of C and a collection of stages equivalent to that of C.

References

L. M. Barclay, J. L. Hutton, and J. Q. Smith. Refining a Bayesian network using a chain event
graph. International Journal of Approximate Reasoning, 54(9):1300–1309, 2013.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in
Bayesian networks. In Proceedings of the 12th Conference on Uncertainty in Artificial Intel-

11

Shenvi and Smith

ligence, pages 115–123, 1996.

F. Carli, M. Leonelli, E. Riccomagno, and G. Varando. The r package stagedtrees for structural
learning of stratified staged trees. arXiv preprint arXiv:2004.06459, 2020.

R. Collazo and P. Taranti. ceg: Chain event graph, 2017. URL https://CRAN.R-project.org/
package=ceg. R package version 0.1.0.

R. A. Collazo, C. Görgen, and J. Q. Smith. Chain event graphs. CRC Press, 2018.

R. G. Cowell and J. Q. Smith. Causal discovery through MAP selection of stratified chain event
graphs. Electronic Journal of Statistics, 8(1):965–997, 2014.

D. Dua and C. Graff. UCI machine learning repository, 2019. URL http://archive.ics.uci.
edu/ml.

D. Fergusson, L. Horwood, and F. Shannon. Social and family factors in childhood hospital admis-
sion. Journal of Epidemiology & Community Health, 40(1):50–58, 1986.

G. Freeman and J. Q. Smith. Bayesian MAP model selection of chain event graphs. Journal of
Multivariate Analysis, 102(7):1152–1165, 2011.

C. Görgen and J. Q. Smith. A differential approach to causality in staged trees. In Conference on
Probabilistic Graphical Models, pages 207–215, 2016.

C. Görgen and J. Q. Smith. Equivalence classes of staged trees. Bernoulli, 24(4A):2676–2692,
2018.

F. Jabbari, S. Visweswaran, and G. F. Cooper. Instance-specific Bayesian network structure learning.
Proceedings of machine learning research, 72:169, 2018.

A. Shenvi and J. Q. Smith. A Bayesian dynamic graphical model for recurrent events in public
health. arXiv preprint arXiv:1811.08872, 2019.

A. Shenvi, J. Q. Smith, R. Walton, and S. Eldridge. Modelling with non-stratified chain event
graphs. In International Conference on Bayesian Statistics in Action, pages 155–163, 2018.

T. Silander and T.-Y. Leong. A dynamic programming algorithm for learning chain event graphs.
In International Conference on Discovery Science, pages 201–216. Springer, 2013.

J. Q. Smith and P. E. Anderson. Conditional independence and chain event graphs. Artificial
Intelligence, 172(1):42–68, 2008.

J. Su and H. Zhang. Representing conditional independence using decision trees. In AAAI, pages
874–879, 2005.

H. Zhang and J. Su. Conditional independence trees. In European Conference on Machine Learning,
pages 513–524. Springer, 2004.

N. L. Zhang and D. Poole. On the role of context-specific independence in probabilistic inference.
In Proceedings of the 16th International Joint Conference on Artificial intelligence, volume 2,
pages 1288–1293, 1999.

12

https://CRAN.R-project.org/package=ceg
https://CRAN.R-project.org/package=ceg
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Introduction
	Notation and Preliminaries
	Why not just Staged Trees?

	A Recursive Algorithm to Construct a CEG
	Related Work

	Experiments
	Discussion
	Proofs
	Proof for Theorem 1
	Proof for Theorem 2
	Proof for Theorem 3

