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Abstract
Probabilistic graphical models are a central tool in AI, however, they are generally not as expressive
as deep neural models, and inference is notoriously hard and slow. In contrast, deep probabilistic
models such as sum-product networks (SPNs) capture joint distributions in a tractable fashion,
but still lack the expressive power of intractable models based on deep neural networks. There-
fore, we introduce conditional SPNs (CSPNs), conditional density estimators for multivariate and
potentially hybrid domains that allow harnessing the expressive power of neural networks while
still maintaining tractability guarantees. One way to implement CSPNs is to use an existing SPN
structure and condition its parameters on the input, e.g., via a deep neural network. Our experimen-
tal evidence demonstrates that CSPNs are competitive with other probabilistic models and yield
superior performance on multilabel image classification compared to mean field and mixture den-
sity networks. Furthermore, they can successfully be employed as building blocks for structured
probabilistic models, such as autoregressive image models.

1. Introduction

Probabilistic models are a fundamental approach in machine learning to represent and distill mean-
ingful representations from data with inherent structure. In practice, however, it has been chal-
lenging to come up with probabilistic models that balance three desirable goals: 1) being expressive
enough to capture the complexity of real-world distributions; 2) maintain—at least on a high level—
interpretable domain structure; and 3) permit a rich set of tractable inference routines.

Probabilistic graphical models (PGMs), for example, admit an interpretable structure, but are
known to achieve a bad trade-off between expressivity and tractable inference (Koller and Friedman,
2009). Probabilistic models based on deep neural networks such as variational autoencoders (VAEs)
(Kingma and Welling, 2014) and generative adversarial networks (GANs) (Goodfellow et al., 2014)
are highly expressive, but generally lack an interpretable structure and have limited capabilities
when it comes to probabilistic inference. Meanwhile, advances in deep probabilistic learning have
shown that tractable models, such as arithmetic circuits (Darwiche, 2003) and sum-product networks
(Poon and Domingos, 2011), can be used to capture complex distributions while maintaining a rich
set of tractable inference routines.

∗. Contributed Equally
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Figure 1: Imposing structure on deep probabilistic architectures. (Left) An Autoregressive Block-
wise CSPN (ABCSPN) factorizes a distribution over images along image patches. (Right)
Olivetti faces generated by an ABCSPN.

How can we combine these lines of research, to strive for a balance between expressivity, struc-
ture, and tractable inference? This question has received surprisingly little attention, yet. Johnson
et al. (2016) combine VAEs with PGMs, and thus effectively equip expressive neural-based models
with a rich structure. However, inference remains intractable in these models. Shen et al. (2019)
proposed structured Bayesian networks, which impose structure among clusters of variables using
probabilistic sentential decision diagrams (PSDDs) to model high-dimensional conditional distribu-
tions (Shen et al., 2018). While this yields well-structured models with a wide range of tractable
inference, they are restricted to binary data and do not establish a link to deep neural networks.
Moreover, PSDDs are more restricted than SPNs. Recently and independently of us, Rahman et al.
(2019) proposed conditional cutset networks (CCNs), a strict sub-class of SPNs. But they do neither
employ conditional independency tests for learning, nor representing mixtures of experts.

In this paper, we introduce conditional sum-product networks (CSPNs), a conditional variant
of SPNs, which can harness the expressive power of universal function approximators such as neu-
ral networks, while still maintaining a wide range of inference routines. Specifically, we make the
following contributions: (1) We introduce CSPNs as a deep tractable model for modelling multivari-
ate, conditional probability distributions P (Y |X) over mixed variables Y, by introducing gating
nodes as mixtures with functional mixing coefficients. (2) We present a structure learning algo-
rithm for CSPNs based on randomized conditional correlation tests (RCoT) which allows to learn
structures from heterogeneous data sources. (3) We connect CSPNs with deep neural networks,
and demonstrate that the improved ability of the resulting neural CSPNs to model dependencies
results in increased multilabel image classification performance. (4) We illustrate how CSPNs may
be used to build structured probabilistic models by introducing Autoregressive Block-wise CSPNs
(ABCSPNs).

2. Conditional Probabilistic Modeling

We are interested in predicting a collection of random variables Y given inputs X, i.e. we are
interested in the problem of structured output prediction (SOP). In the probabilistic setting, SOP
translates to modeling and learning a high-dimensional conditional distribution P (Y |X). While
one could learn a univariate predictor for each variable Y ∈ Y separately, this approach assumes
complete independence among Y. This mean field assumption is often violated but still frequently
used. Gaussian Processes (GPs) (Rasmussen and Williams, 2006) and Conditional Random Fields
(CRFs) (Lafferty et al., 2001) are more expressive alternatives. However, they have serious short-
comings when inference has to scale to high-dimensional data or many samples. One approach
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to scale GPs to larger datasets is deep mixtures of GPs, introduced in (Trapp et al., 2018), which
can be seen as a combination of GPs and SPNs. However, they are limited to continuous domains.
In comparison, CSPNs can learn conditional distributions over heterogeneous data, i.e., where Y
might contain discrete or continuous random variables, or even mixed data types. In a nutshell,
CSPNs can tackle unrestricted SOP in a principled probabilistic way.

As an alternative within the family of tractable probabilistic models, logistic circuits (LCs) have
been recently introduced as discriminative models (Liang and Van den Broeck, 2019), showing
classification accuracy competitive to neural nets on a series of benchmarks. However, LCs and
discriminative learning of SPNs (Gens and Domingos, 2012) are limited to single output prediction.
Likewise, discriminative arithmetic circuits (DACs) also directly tackle modeling a conditional dis-
tribution (Rooshenas and Lowd, 2016). They are learned via compilation of CRFs, requiring so-
phisticated and potentially slow structure learning routines. Also related are sum-product-quotient
networks (SPQNs) (Sharir and Shashua, 2017), which extend SPNs by introducing quotient nodes.
This enables SPQNs to represent a conditional distribution P (Y |X) as the ratio P (Y,X)/P (X)
where the two terms are modeled by two SPNs. However, CSPNs can include more complex con-
ditional models allowing for a more compact representation.

Our neural CSPNs are close in spirit to probabilistic models based on neural networks. Gener-
ally, this line of research faces the challenge of how to parameterize distributions using the outputs
of deterministic neural function approximators. Frequently, the mean field assumption is made,
interpreting the output of the network as the parameters of primitive univariate distributions, as-
suming independence among random variables. Modelling complex distributions must then involve
sampling as in VAEs (Kingma and Welling, 2014) or hierarchical variational models (Ranganath
et al., 2016), causing significant computational overhead and yielding highly intractable models.
Other approaches for conditional density estimation based on neural networks include (conditional)
normalizing flows, which yield tractable likelihoods, but are limited to continuous distributions and
come with significant computational costs for computing the determinant of the Jacobian (Rezende
and Mohamed, 2015). Generally, CSPNs are most closely related to two classic approaches, namely
mixture density networks (MDNs) (Bishop, 1994) and (hierarchical) mixtures of experts (Jordan and
Jacobs, 1994). These models use the output of neural networks to parameterize a (typically Gaus-
sian) mixture model. Shallow mixture models, however, are often inadequate in high dimensions,
as the number of components required to accurately model the data may grow exponentially with
the number of dimensions. SPNs address this by encoding a hierarchy of mixtures. Neural CSPNs
may consequently be seen as a deep, hierarchical version of MDNs and MoEs.

3. (Unconditional) Sum-Product Networks

Here, we briefly review classical (unconditional) SPNs. For details, see (Darwiche, 2003; Poon and
Domingos, 2011; Peharz et al., 2017). We denote random variables (RVs) as upper-case letters, e.g.,
V , their values as lower-case letters, e.g., v ∼ V ; and sets of RVs in bold, e.g., v ∼ V.

A sum-product network (SPN) over a set of random variables V is defined via an acyclic di-
rected graph (DAG) containing three types of nodes: distribution nodes, sum nodes and product
nodes. All leaves of the DAG are distribution nodes, and all internal nodes are either sums or prod-
ucts. An SPN leaf represents a univariate distribution P (Y ) for some RV Y ∈ V. A sum node
represents a mixture

∑
k wkPk(Y), where Pk are the children of the sum node according to the

DAG, and wk satisfy wk ≥ 0 and
∑

k wk = 1. In comparison to classical probabilistic graphical
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Figure 2: Overview of the architecture (left) and
a concrete CSPN example encoding
P (Y |X) (right). X is the set of condi-
tional variables and Y consists of Y1,
Y2 and Y3. Each color of the arrow
represents one data flow. The gating
weights, possibly also the leaves, are
parameterized by the output of a neu-
ral network given X.

models, SPNs have the advantage that they can represent certain distributions much more succinct,
even if the corresponding graphical model would have very high tree-width (Koller and Friedman,
2009). Furthermore, inference routines such as marginalization and conditioning can be tackled
in linear time w.r.t. the network size (Darwiche, 2003; Poon and Domingos, 2011). These tasks
can also be compiled, i.e., starting from an SPN representing P (V), it is possible to generate a
new SPN representing the marginal distribution for an arbitrary X ⊂ V, potentially conditioned on
event Y = y, for any Y ⊂ V, Y ∩X = ∅.

Indeed, one way to represent conditional distribution P (Y |X) is to train a regular SPN on the
joint P (V), and to then compile it into a conditional distribution for each input x of interest. It
is clear, however, that this will generally deliver sub-optimal results, since the network will not be
specialized to the specific input-output pair of X and Y. Intuitively, training the full joint P (V)
optimizes all possible conditional distributions one can derive from the joint. Thus, when we are
interested in learning a conditional distribution for a set of input and output variables X and Y
known a-priori, directly learning a conditional distribution can be expected to deliver better results.

4. Conditional Sum-Product Networks

We now introduce a notion of conditional SPNs (CSPNs), which structurally reflect conditional
independencies, and propose a learning framework to induce CSPNs from data. To this end, we
employ Y ⊂ V to denote the target RVs, also called labels, while we denote the disjoint set of
observed RVs, also called features, as X := V \Y.

Definition of Conditional SPNs (CSPNs). We define a CSPN as a rooted DAG containing
three types of nodes, namely leaf, gating, and product nodes, encoding a conditional probability
distribution P (Y |X). See Fig. 2 for an illustrative example of a CSPN. Each leaf encodes a nor-
malized univariate conditional distribution P (Y |X) over a target RV Y ∈ Y, where Y is denoted
as the leaf’s conditional scope. A product node factorizes a conditional probability distribution over
its children, i.e.,

∏
k Pk(Yk |X) where Yk ⊂ Y. To encode functional dependencies on the input

features, a gating node computes
∑

k gk(X)Pk(Y |X) where gk is the output of a non-negative
function g w.r.t. the k-th child node, such that

∑
k gk(X) = 1. One may also choose a constant

gating function and the gating node hence becomes a standard sum node. The conditional scope of
a non-leaf node is the union of the conditional scopes of its children.

Gating nodes are akin to gates in mixtures of experts (Bishop et al., 1995; Shazeer et al., 2017),
which motivates the name. The notions of completeness and decomposability of SPNs (Poon and
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Domingos, 2011) naturally carry over to CSPNs, and we can reuse the efficient SPN inference
routines, guaranteeing that any conditional marginal probability may be computed exactly in linear
time (Rooshenas and Lowd, 2016). This can easily be verified by considering that for a fixed
input x, a CSPN reduces to a standard SPN over the labels Y, allowing any inference routine for
standard SPNs (Poon and Domingos, 2011; Peharz et al., 2015; Vergari et al., 2015) to be employed.
However, CSPNs are more powerful than SPNs.

CSPNs are More Powerful than SPNs. Neural networks are known to be universal approx-
imators. As Choi and Darwiche (2018) argue, a probabilistic model1 over finite-discrete random
variables represents not only one function, but a function for each possible probabilistic query —
the (conditional) marginals. Unfortunately, the functions corresponding to queries, unlike neural
networks, are generally not universal approximators. They are restricted to multi-linear functions
of primitive distributions or quotients thereof. Consequently, some functions may only be (approx-
imately) fitted using a large number of e.g. Gaussian leaf distributions. By adding gating nodes,
however, CSPNs extend SPNs in a way that allows them to induce universal approximators. This
can be seen as follows. Using threshold functions xi ≤ c (c ∈ R) as gates, one can encode test-
ing arithmetic circuits (Choi and Darwiche, 2018) as CSPNs. Testing arithmetic circuits, how-
ever, have been proven to encode piece-wise multi-linear functions and in turn ResNets, which are
universal approximators. Moreover, the class of Gaussian CSPNs mean functions is dense in the
class of all continuous functions over arbitrary compact domains. To see this, we note that one
can use single-output softmax gates in order to facilitate modelling mixtures of experts models∑

k gk(X)Pk(Y |X) in the form of Nguyen et al. (2016). Consequently, their result carries over.

5. Learning Conditional Sum-Product Networks

A simple way to construct CSPNs representing P (Y |X) is to start from a standard or even random
SPN over Y, and to make its parameters (i.e., the sum weights and parameters of leaf distribu-
tions) functional of input x, defining P (Y |X = x) := P (Y; θ), where parameters θ := g(x)
are a function of the input x. For g we might use arbitrary function representations, such as deep
neural networks. This architecture, which we call neural CSPN, works very well, as we demon-
strate in the experimental section. However, we may fail to exploit some conditional independen-
cies among the random variables. Consequently, we now introduce a structure learning strategy
LearnCSPN extending the established LearnSPN algorithm (Gens and Domingos, 2013) which
has been instantiated several times for learning (unconditional) SPNs under different distributional
assumptions (Vergari et al., 2015; Molina et al., 2018).

Our LearnCSPN routine builds a CSPN in a top-down fashion by introducing nodes while
partitioning a data matrix in a recursive and greedy manner. It creates one of the three node types
at each step — (1) a leaf, (2) a product, or (3) a gating node. If a single target RV Y is present,
one conditional probability distribution can be fit as a leaf. To generate product nodes, conditional
independencies are found by means of a statistical test to partition the set of target RVs Y. If no such
partitioning is found, then training samples are partitioned into clusters (conditioning) to induce a
gating node. Finally, to calibrate all parameters, capturing cross-covariances between Y and X, we
run an end-to-end parameter estimation. Let us now review the three steps of LearnCSPN more in
detail.

1. In their exposition, they focus on Bayesian networks and arithmetic circuits, but their arguments carry over to SPNs.
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(1) Inducing Leaves. In order to allow for tractable inference, we require conditional models at
the leaves to be normalized. Apart from this requirement, any such univariate tractable conditional
model may be plugged in a CSPN effortlessly to model P (Y |X). This can be simple univariate
models or the joint output of a deep model. For the sake of simplicity, we here use Generalized
Linear Models (GLMs) (McCullagh, 1984) as leaves, due to their simple and flexible nature. We
compute P (Y |µ) with µ := glm(X) by regressing univariate parameters µ from features X, for a
given set of distributions in the exponential family.

(2) Inducing Product Nodes. For product nodes, we are interested in decomposing the labels Y
into conditionally-independent subsets via conditional independence (CI) tests. In terms of density
functions, testing that Yi is independent of Yj given X = x, for any value of x, i.e., Yi ⊥⊥ Yj |X, can
equivalently be characterized as P (Yi, Yj |X) = P (Yi |X)P (Yj |X). To accommodate arbitrary
conditional distributions at the leaves, regardless of their parametric likelihood models, we adopt
a non-parametric pairwise CI test procedure to decompose labels Y. Specifically, the randomized
conditional correlation test (RCoT) (Strobl et al., 2019) is used. It computes the squared Hilbert-
Schmidt norm of the partial cross-covariance operator and uses the Lindsay-Pilla-Basak method to
approximate the asymptotic distribution. We then create a graph where the nodes are RVs in Y and
put an edge between two nodes Yi, Yj if we cannot reject the null hypothesis that Yi ⊥⊥ Yj |X for
a given threshold α. The conditional scopes of product children are then given by the connected
components of this graph, akin to (Gens and Domingos, 2013).

(3) Inducing Gating Nodes. A probabilistic interpretation of a gating node can be given in the
context of mixture models for conditional probability distributions

∑
k gk(X)Pk(Y |X) (Bishop

et al., 1995). Estimating them is a form of conditional clustering (He et al., 2017) to accommodat-
ing for known cross-covariates between Y and X . Here, we approach this by inducing the gating
node structure using clustering of the features X only and calibrating the cross-covariates after-
wards by end-to-end parameters estimation. The clustering scheme can be instantiated based on the
available knowledge of the data distribution (e.g., k-Means for Gaussians); one can also leverage
random splits, as in random projection trees (Dasgupta and Freund, 2008). Then, we select a func-
tional form for the gating function gk(X), ideally, a differentiable parametric one such as logistic
regression or a (deep) neural network with a softmax layer such that constraints of a proper mixture
of distributions, i.e.,

∑
k gk(X) = 1 and ∀Xgk(X) >= 0 are fulfilled. We denote the corresponding

cluster assignment as a one-hot coded vector Z and fit the gating function to predict Zk = gk(X).
(4) Calibrating Cross-Covariances. Given the induced structure of the complete CSPN, we

calibrate the cross-covariances between X and Y by final joint parameter estimation in an end-
to-end fashion. That is, we fit each gating function to predict Zk := argmax gk(X) (using e.g.
softmax) and the parameters of the leaf distributions jointly. This is a proper generalization of
traditional sum nodes in SPNs: sum node is a special case of a gating node where the mixtures are
constants independent of X, i.e. gk(X) = c. Moreover, this functional mixing does not break the
tractability guarantees over Y as X is always assumed to be evidence in the conditional case.

To summarize, LearnCSPN automatically sets the parameters of the gating function as de-
scribed above. The parameters of the GLMs are obtained by an Iteratively Reweighted Least
Squares (IRWLS) algorithm as described in (Green, 1984), on the instances available at the leaf
node. However, those parameters are locally optimized and usually not optimal for the global dis-
tribution. Fortunately, CSPNs are differentiable as long as the leaf models and gating functions are
differentiable. Hence, one can optimize the conditional likelihood in an end-to-end fashion using
gradient-based optimization techniques.
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Figure 3: CSPNs can encode nontrivial condi-
tional distributions: Traffic flow pre-
dictions of Poisson CSPNs (top) ver-
sus SPNs (botton) for shallow (left)
or deep models (center and right).
CSPNs are consistently more accurate
than corresponding SPNs and, as ex-
pected, deeper CSPNs outperform shal-
low ones (center and right).

6. Imposing Structure on Deep Generative Models: Autoregressive Block-wise CSPN

To illustrate how to impose structure on generative models by employing CSPNs as building blocks,
we construct an autoregressive model composed of CSPNs. This is basically done by representing
a joint distribution as a factorization of conditional models, as in Bayesian networks. Specifically,
by applying the chain rule of probabilities, we can decompose a joint distribution as the product
P (Y,X) = P (Y |X)P (X). Then, one could learn an SPN to model P (X) and a CSPN for
P (Y |X). By combining both models using a single product node, we represent the whole joint as
a computational graph. Now, if one applies the same operation several times by repeatedly partition-
ing Y in a series of disjoint sets Y1,Y2, . . . we can obtain an autoregressive model representation,
which we call an Autoregressive Block-wise CSPN (ABCSPN). Inspired by image autoregressive
models like PixelCNN (van den Oord et al., 2016a) and PixelRNN (van den Oord et al., 2016b), we
propose the ABCSPN for conditional image generation to illustrate the benefits of imposing struc-
ture. For one ABCSPN, we divide images into pixel blocks, hence factorizing the joint distribution
block-wise instead of pixel-wise as in PixelC/RNN. Each factor accounting for a block of pixels is
then a CSPN representing the distribution of those pixels as conditioned on all previous blocks and
on the class labels, cf. Fig. 1 (left).2 We factorize blocks in raster scan order, row by row and left to
right, but any other ordering is also possible. The complete generative model over image I encodes:
p(I) =

∏n
i=1 p(Bi |B1, . . . ,Bi−1,C) · p(C) where Bi denotes the pixel RVs of the i-th block and

C the one-hot coded image class. Learning each conditional block as a CSPN can be done by the
structure learning routine introduced above.

7. Empirical Evidence

Here we investigate CSPNs in experiments on real-world data. Specifically, we aim to answer the
following questions: (Q1) Can CSPNs perform better than regular SPNs? (Q2) How accurate are
CSPNs for SOP? (Q3) How do ABCSPNs perform on real data? (Q4) Do neural CSPNs outper-
form baseline neural conditional models such as MDNs on image SOP tasks? To this end, we
implemented CSPNs in Python calling TensorFlow and R.

(Q1, Q2) Multivariate Traffic Data Prediction. We employ CSPNs for multivariate traffic data
prediction, comparing them against SPNs with Poisson leaf distributions (Molina et al., 2017). This
is an appropriate model as the traffic data represents counts of vehicles. We considered temporal
vehicular traffic flows in the German city of Cologne (Ide et al., 2015). The data comprises 39 RVs

2. Here, image labels play the role of observed RVs in X.
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Table 1: Average test conditional log-likelihood (CLL) of DACL, CCNs and CSPNs on 20 standard
density estimation benchmarks. Best results are bold. As the numbers of wins for DACL,
CCNs and CSPNs show, CSPNs are competitive to state-of-the-art.

Nltcs Msnbc KDD Plants Audio Jester Netflix Accidents Retail Pumsb.

50% evidence
DACL -2.770 -2.918 -0.998 -4.655 -18.958 -24.830 -26.245 -9.718 -4.825 -6.363
CCN -2.58 -2.18 -1.19 -4.53 -18.67 -24.96 -26.03 -10.24 -4.88 -6.98
CSPN -2.795 -3.165 -1.023 -4.720 -18.543 -24.543 -25.914 -11.587 -5.600 -7.383

80% evidence
DACL -1.255 -1.557 -0.386 -1.812 -7.337 -9.998 -10.482 -3.493 -1.687 -2.594
CCN -0.99 -0.87 -0.36 -1.54 -7.58 -9.75 -10.22 -3.61 -1.66 -2.02
CSPN -1.256 -1.684 -0.397 -1.683 -7.110 -9.830 -10.351 -4.045 -1.654 -2.618

Dna Kosarek MSWeb Book EachMovie WebKB Reuters-52 20News Bbc Ad

50% evidence
DACL -34.737 -5.053 -5.653 -16.801 -23.325 -72.072 -41.544 -76.063 -118.684 -4.893
CCN -32.98 -4.76 -4.25 -15.90 -24.85 -69.34 -36.56 -71.69 -114.52 -3.41
CSPN -38.243 -5.527 -6.686 -10.653 -18.130 -18.542 -15.736 -35.900 -47.138 -6.290

80% evidence
DACL -12.116 -2.549 -1.333 -6.817 -9.403 -28.087 -17.143 -27.918 -44.811 -1.370
CCN -12.29 -1.14 -1.69 -6.48 -8.40 -25.76 -15.67 -27.72 -43.27 -1.18
CSPN -11.895 -2.397 -1.335 -3.191 -4.579 -2.623 -3.878 -4.984 -2.996 -1.030

50% evidence Wins DACL: 4 CCN: 7 CSPN: 9
80% evidence Wins DACL: 2 CCN: 8 CSPN: 10

whose values are from stationary detectors located at the 50km long Cologne orbital freeway, each
one counting the number of vehicles within a fixed time interval. It contains 1440 samples, each of
which is a snapshot of the traffic flow. The task of the experiments is to predict the next snapshot
(|Y| = 39) given a historical one (|X| = 39).

We trained both CSPNs and SPNs controlling the depth of the models. The CSPNs use GLMs
with exponential link function as Poisson univariate conditional leaves. Results are summarized in
Fig. 3. We can see that CSPNs are always the most accurate model as their root mean squared error
(RMSE) is always the lowest. As expected, deeper CSPNs have lower predictive error compared to
shallow CSPNs. Moreover smaller CSPNs perform equally well or even better than SPNs, empir-
ically confirming that CSPN are more expressive than SPNs. This answers (Q1, Q2) affirmatively
and also provides evidence for the convenience of directly modeling a conditional distribution.

(Q2) Conditional Density Estimation. We now focus on conditional density estimation on
20 standard binary benchmark datasets. The number of variables of these datasets range from 16
to 1556. In order to estimate conditional density, features are splitted into evidences (|X|) and
targets (|Y|) with different proportions3. We compare to DACL (Rooshenas and Lowd, 2016) and
CCNs (Rahman et al., 2019) as they currently provide state-of-the-art conditional log-likelihoods
(CLLs) on such data. To this end, we first perform structure learning on the train data split (stopping
learning when no more than 10% of samples are available), followed by end-to-end learning on the
train and validation data. Note that the sophisticated structure learning in DACL directly optimizes
for the CLL at each iteration.

Results are reported in Tab. 1 (best in bold). Since we do not have access to per-instance CLLs
on CCNs, t-test is not possible, but the results still provide a tendency for comparison. We can see
that for both the 80%-evidence scenario and the 50%-evidence scenario, CSPNs win the most. In
total, CSPNs perform on par with CCNs (wins are quite balanced) and outperform DACL. Besides,

3. We adopted the data splits of Rooshenas and Lowd (2016).
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we note that CSPNs are faster to learn than DACL and that, in practice, no real hyperparameter
tuning was necessary to achieve these scores, while DACL ones are the result of a fine grained grid
search (see (Rooshenas and Lowd, 2016)). This answers (Q2) affirmatively and shows that CSPNs
are comparable to state-of-the-art.

(Q3) Auto-Regressive Image Generation. We investigate ABCSPNs on Olivetti faces by split-
ting each image into 16 resp. 64 blocks of equal size. Then we trained a CSPN on Gaussian domain
for each block conditioned on all the blocks above and to the left of it and on the image class and
formulate the distribution of the images as the product of all the CSPNs. In Fig. 1 (right), new faces
are sampled from an ABCSPN after conditioning on a set of class images that is the mixing of two
original classes in the Olivetti dataset. That is, by conditioning on multiple classes it generates sam-
ples that resemble both individuals belonging to those classes, even though the ABCSPN never saw
that class combination before during training. As one can see, these samples from ABCSPNs look
very plausible. ABCSPNs achieve this while reducing the number of independency tests among
pixels required by CSPNs: from quadratic over all pixels in an image down to quadratic in the block
size. This demonstrates how ABCSPNs are able to learn meaningful and accurate models over the
image manifold, providing an affirmative answer to (Q3).

(Q4) Neural CSPNs with Random Structures. In high-dimensional domains, such as images,
the structure learning procedure introduced above may be intractable. In this case, CSPNs may
still be applied by starting from a random SPN structure as Peharz et al. (2019) proposed, resulting
in a flexible distribution P (Y; θ := g(X)). When g is represented by a deep neural network,
we obtain a highly expressive conditional density estimator which can be trained end-to-end. To
demonstrate the efficacy of this approach, we evaluate it on several multilabel image classification
tasks. The goal of each task is to predict the joint conditional distribution of binary labels Y given
an image X. We experiment on the CelebA dataset, which features images of faces annotated with
40 binary attributes. In addition, we constructed multilabel versions of the MNIST and Fashion-
MNIST datasets, by adding additional labels indicating symmetry, size, etc. to the existing class
labels, yielding 16 binary labels total.

We compare our model to two different common ways of parameterizing conditional distribu-
tions using neural networks. The first is the mean field approximation, whereby the output of a
neural network is interpreted as logits of independent univariate Bernoulli distributions, assuming
that the labels Y are conditionally independent given X. Second, we compare to mixture density
networks with 10 mixture components, each itself a mean field distribution. For each of these mod-
els, including the CSPN, we use the same standard convolutional neural network architecture up
to the last two layers. Those final two layers are customized to the different desired output for-
mats: For the mean field and MDN models, all parameters are predicted using two dense layers.
For the CSPN, we use a dense layer followed by a 1d-convolution, in order to obtain the increased
number of SPN parameters without using drastically more neural network weights. The resulting
conditional log-likelihoods as well as accuracies are given in Table 2. To compute accuracies, we
obtained MPE estimates from the models using the standard max-product approximation. On the
MNIST and Fashion dataset, estimates were counted as accurate only if all 16 labels were correct,
on the CelebA dataset, we report the average accuracy across all 40 labels. The results indicate
that the mean field approximation is inappropriate on the considered datasets, as allowing the inclu-
sion of conditional dependencies resulted in a pronounced increase in both likelihood and accuracy.
The improved model capacity of the CSPN compared to the MDN yielded a further performance
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Table 2: Comparison to mean field models and mixture density networks: Average test conditional
log-likelihood (CLL) and test accuracy of the mean field (MF) model, mixture density
network (MDN), and neural conditional SPN (CSPN) on multilabel image classification
tasks. The best results are marked in bold. As one can see, the additional representational
power of CSPNs yields notable improvements.

CLL ACCURACY

MF MDN CSPN MF MDN CSPN

MNIST -0.70 -0.61 -0.54 74.1% 76.4% 78.4%
FASHION -0.95 -0.73 -0.70 73.4% 73.7% 75.5%
CELEBA -12.1 -11.6 -10.8 86.6% 85.3% 87.8%

increase. On CelebA, CSPN outperforms a number of sophisticated neural network architectures,
despite being based on a standard convnet with only about 400k parameters (Ehrlich et al., 2016).

8. Conclusions

We extended the concept of sum-product networks (SPNs) towards conditional distributions by in-
troducing conditional SPNs (CSPNs). Conceptually, they combine simpler models in a hierarchical
fashion in order to create a deep representation that can model multivariate and mixed conditional
distributions while maintaining tractability. They can be used to impose structure on deep prob-
abilistic models and, in turn, significantly boost their power as demonstrated by our experimental
results. Much remains to be explored, including other learning methods for CSPNs, design princi-
ples for CSPN+SPN architectures, combining the (C)SPN stack with the deep neural learning stack,
more work on extensions to sequential and autoregressive domains, and further applications.
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