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Abstract
Almost all of the work in graphical models for game theory has mirrored previous work in proba-
bilistic graphical models. Our work considers the opposite direction: Taking advantage of advances
in equilibrium computation for probabilistic inference. In particular, we present formulations of in-
ference problems in Markov random fields (MRFs) as computation of equilibria in a certain class of
game-theoretic graphical models. While some previous work explores this direction, we still lack a
more precise connection between variational probabilistic inference in MRFs and correlated equi-
libria. This paper sharpens the connection, which helps us exploit relatively more recent theoretical
and empirical results from the literature on algorithmic and computational game theory on the
tractable, polynomial-time computation of exact or approximate correlated equilibria in graphical
games with arbitrary, loopy graph structure. Our work discusses how to design new algorithms with
equally tractable guarantees for the computation of approximate variational inference in MRFs. In
addition, inspired by a previously stated game-theoretic view of tree-reweighted message-passing
techniques for belief inference as a zero-sum game, we propose a different, general-sum potential
game to design approximate fictitious-play techniques. Empirical evaluations on synthetic exper-
iments and on an application to soft de-noising on real-world image datasets illustrate the perfor-
mance of our proposed approach and shed some light on the conditions under which the resulting
belief inference algorithms may be most effective relative to standard state-of-the-art methods.
Keywords: game theory; belief inference; correlated equilibria; equilibrium computation

1. Introduction

Almost all of the work in graphical games has borrowed heavily from analogies to probabilistic
graphical models (PGMs). However, over-reliance on those analogies and previous standard ap-
proaches to exact inference might have led that approach to face the same computational roadblocks
that plagued most exact-inference techniques.

As an example of work that heavily exploits previous work in PGMs, Kakade et al. (2003)
designed polynomial-time algorithms based on linear programming for computing CE in standard
graphical games with tree graphs. The approach and polynomial-time results extend to graphical
games with bounded-tree-width graphs and graphical polymatrix games with tree graphs. Exact
inference is tractable in PGMs whose graphs have bounded treewidth, but intractable in general.
Papadimitriou and Roughgarden (2008) showed the intractability of computing the “social-welfare”
optimum correlated equilibria (CE) in arbitrary graphical games. Everything seemed to point to-
ward an eventual resignation that the approach of Kakade et al. (2003), along with any other ap-
proach to the problem for that matter, had hit the “bounded-treewidth-threshold wall.”

Yet, soon after, Papadimitriou (2005) took a radically different approach to the problem, and
surprised the community with an efficient algorithm for computing CE not only in graphical games,
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but also in almost all known compactly representable games. Jiang and Leyton-Brown (2015) built
upon Papadimitriou’s idea to provide an improved polynomial-time algorithm.

An immediate question that arises from the algorithmic results just described is, what is so
fundamentally different between the problem of exact inference in graphical models and equilibrium
computation that made this result possible in the context of graphical games? It is well-known
that pure strategy Nash equilibrium (PSNE) is inherently a classical/standard discrete constraints
satisfaction problem (CSP). It is also well-known that any CSP with a solution can be cast as a most-
likely, or equivalently, a maximum a posteriori (MAP) assignment estimation problem in Markov
random fields (MRFs). Through this connection, it is clear that there exists a MAP formulation of
PSNE. But what about other, more general forms of equilibria?

We present here a formulation of the problem of equilibrium computation as a kind of local
conditions for different approximations to belief inference. Similarly, we show how one can view
some special games, called graphical potential games (Ortiz, 2015), as defining an equivalent MRF
whose “locally optimal” solutions correspond to arbitrary equilibria of the game. We employ ideas
from the literature of learning in games (Fudenberg and Levine, 1999), particularly no-regret algo-
rithms and fictitious play, to propose two specific instances of game-theoretic inspired, practical,
and effective heuristics for belief inference in MRFs, based on two different approaches: one lo-
cal, the other global. We evaluate our proposed algorithms within the context of the most popular,
standard, and state-of-art techniques from the literature in PGMs.

2. Preliminaries

Denote by x ≡ (x1, x2, . . . , xn) an n-dimensional vector and by x−i ≡ (x1, . . . , xi−1, xi+1, . . . , xn)

the same vector without component i. Similarly, for every set S ⊂ [n] ≡ {1, . . . , n}, denote by
xS ≡ (xi : i ∈ S) the (sub-)vector formed from x using only components in S, such that, letting
Sc ≡ [n]−S denote the complement of S, we can denote x ≡ (xS , xSc) ≡ (xi, x−i) for every i. If
A1, . . . , An are sets, denote by A ≡ ×i∈[n]Ai, A−i ≡ ×j∈[n]−{i}Aj and AS ≡ ×j∈SAj .

Let G = (V,E) be an undirected graph, with finite set of n vertices or nodes V = {1, . . . , n}
and a set of (undirected) edges E. For each node i, let N (i) ≡ {j | (i, j) ∈ E} be the set of
neighbors of i in G, not including i, and N(i) ≡ N (i) ∪ {i} the set including i. A clique C of G is
a set of nodes with the property that they are all mutually connected: for all i, j ∈ C, (i, j) ∈ E; in
addition, C is maximal if there is no other node k outside C that is also connected to each node in
C: for all k ∈ V − C, (k, i) /∈ E for some i ∈ C.

Denote by Ωi the (finite) set of possible values that random variable Xi can take. By definiton,
a joint probability distribution P over Ω is a Markov random field (MRF) with respect to (wrt) an
undirected graph G if for all x ∈ Ω, for every node i, P (Xi = xi | X−i = x−i) = P (Xi =
xi | XN (i) = xN (i)). In that case, the neighbors/variables XN (i) form the Markov blanket of
node/variable Xi. Define local potential functions {φC : ΩC → R} over each clique C in the
graph, and Ψ(x) ≡

∑
C∈C φC(xC) as a Gibbs potential with respect to G. By the Hammersley and

Clifford (1971)’s Theorem, we can express a positive MRF as P (X = x) ∝ exp(Ψ(x)) .

Game theory (von Neumann and Morgenstern, 1947) provides a mathematical model of the
stable behavior (or outcome) that may result from the interaction of rational individuals. This paper
concentrates on noncooperative settings: individuals maximize their own utility, act independently,
and do not have (direct) control over the behavior of others. Let V = [n] denote a finite set of n
players in a game. For each player i ∈ V , let Ai denote the set of actions or pure strategies that i
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can play. The set A is the set of joint actions. Let x ∈ A denote a joint action, and xi the individual
action of player i in x. Let Mi : A→ R denote the payoff/utility function of player i. If the Ai’s are
finite, then Mi is called the payoff matrix of player i of a game in normal-form.

Graphical potential games (GPGs), of which Ortiz (2015) provides a characterization, play a
key role in establishing a stronger connection between probabilistic inference in MRFs and equi-
libria in games than previously noted. While not all games in normal-form have a PSNE (e.g.,
rock-paper-scissors), GPGs always have a PSNE.

Equilibria are generally considered the solutions of games. Various notions of equilibria exist.
Given ε ≥ 0, an ε-approximate correlated equilibrium (ε-CE) is a joint probability distribution Q
over A such that, for all players i, xi, x′i ∈ Ai, xi 6= x′i, and Q(xi) > 0,

∑
x−i

Q(x1, x−i)Mi(xi, x−i) ≥∑
x−i

Q(x′i, x−i)Mi(x
′
i, x−i)− ε, where Q(xi) ≡

∑
x−i

Q(xi, x−i) is the (marginal) probability that
player i will play xi according to Q. An ε-approximate mixed strategy Nash equilibrium (ε-MSNE)
is and ε-CE that is a product distribution. An ε-approximate pure strategy (Nash) equilibrium
(PSNE) is a joint action x∗ for which Q(x) = 1[x ∈ x∗] is a an ε-CE. An exact CE (Aumann,
1974), MSNE, and PSNE are a 0-CE, 0-MSNE, and 0-PSNE, respectively. Every game in normal-
form has at least one MSNE (Nash, 1950, 1951). Thus, every game has an ε-MSNE “solution,” and
thus also an ε-CE.

3. Equilibria and Inference

In this section, we seek to provide a more formal connection between probabilistic and game-
theoretic graphical models in order to leverage advances in equilibrium computation for proba-
bilistic inference. (We omit all proofs and derivations due to space constraints.)

3.1 PSNE and Approximate MAP Inference

Consider an MRF P with respect to graph G and Gibbs potential Ψ defined by the set of potential
functions {φC}. For each node i, denote by Ci ⊂ C the subset of cliques in G that include i. Note
that the (inclusive) neighborhood of player is given by N(i) = ∪C∈CiC. Define an MRF-induced
GPG with the same graph G, and for each player i, hypergraph with hyperedges Ci and local-clique
payoff hypermatrices M ′i,C(xC) ≡ φC(xC) for all C ∈ Ci defining the Gibbs potential function Ψ:
Mi(xi, x−i)−Mi(x

′
i, x−i) = Ψ(xi, x−i)−Ψ(x′i, x−i) =

∑
C∈Ci M

′
i,C(xi, xC−{i})−M ′i,C(x′i, xC−{i}).

Property 1 The representation size of the MRF-induced game is the same as that of the MRF.

Similarly, for any potential game, one can define a game-induced MRF using the potential function
of the game whose set of local maxima corresponds exactly to the set of PSNE of the potential
game. Through this connection we can show that solving the local-MAP problem in MRFs is PLS-
complete in general (Fabrikant et al., 2004). In short, we can use algorithms for PSNE as heuristics
to compute locally optimal MAP assignments of P and vice versa.

3.2 CE and Belief Inference

Going beyond PSNE and MAP estimation, this subsection begins to establish a stronger, and poten-
tially more useful connection between probabilistic inference and more general concepts of equi-
libria in games. For any pair of distributions P and Q, let H(Q,P ) ≡

∑
xQ
′(x)[− lnP (x)] and
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KL(Q ‖ P ) ≡
∑

xQ(x) ln(Q(x)/P (x)) = H(Q,P )−H(Q) be the cross entropy and Kullback-
Leibler divergence between probability distributions Q and P , with respect to Q, respectively.

Property 2 For any MRF P , any CE Q of the game induced by P satisfies KL(Q ‖ P ) =
minQ′

X′
i
|Xi

KL(Q̃i ‖ P ) +H(Q̃i)−H(Q) for all i, with Q̃i(x) ≡
∑

x′i
Q′X′i|Xi

(xi|x′i)Q(x−i|x′i)Q(x′i).

Hence, any CE of the MRF-induced game is an approximate local optimum (or critical point) of
an approximation of the MRF based on variational inference, where the quality of the approximate
local optimum depends on the resulting difference in entropiesH(Q̃i)−H(Q) at the local optimum.

We can also derive a slightly weaker condition based on a relaxation of CE called a coarse
CE (Hannan, 1957; Moulin and Vial, 1978). For each player i, denote byQ−i(x−i) ≡

∑
xi
Q(xi, x−i)

the marginal distribution of play over the joint-actions of all players except player i; by Q′iQ−i
the joint distribution defined as (Q′iQ−i)(x) ≡ Q′i(xi)Q−i(x−i) for all x; and by H(Qi|−i) ≡
H(Q−i) − H(Q) the conditional entropy of the individual play of player i given the joint play of
all the players except i.

Property 3 For any MRF P , any CE Q of the game induced by P satisfies KL(Q ‖ P ) ≤
mini

[
minQ′i KL(Q′iQ−i ‖ P ) +H(Q′i)

]
−H(Qi|−i).

This connection allows us to apply several simple methods for computing coarse CE.
In the special case of MSNE, the joint mixed strategy Q(x) =

∏
iQi(xi) is a product distribu-

tion and we can obtain a tighter condition than for arbitrary (coarse) CE. Denote by Q×−i(x−i) ≡∏
j 6=iQj(xj) =

∑
xi
Q(x) the (marginal) joint action of play over all the players except i, and de-

note by (Q′iQ
×
−i) the probability distribution defined such that the probability of x is (Q′iQ

×
−i)(x) ≡

Q′i(xi)Q
×
−i(x−i).

Property 4 For any MRF P , any MSNE Q of the game induced by P satisfies KL(Q ‖ P ) =[
minQ′i KL(Q′iQ

×
−i ‖ P ) +H(Q′i)

]
−H(Qi), for all i.

Hence, an MSNE Q of the game is an approximate locally-optimal mean-field approximation. In
fact, based on the last property, we can show that Q is a so-called logit equilibrium, which is an
instance of quantal response equilibria (QRE) (McKelvey and Palfrey, 1995), and can equivalently
be viewed as a PSNE of a so-called infinite potential game in this case, if and only if it is a local opti-
mum (or critical point) of a mean-field approximation. This establishes connections to the literature
on learning in games (Fudenberg and Levine, 1999), which opens up opportunities to use algorithms
from that community, such as those based on fictitious play, to perform probabilistic inference, as
we do here. The last property also suggets that we could use appropriately-modified versions of al-
gorithms for MSNE as heuristics to obtain a mean-field approximation of the true marginals. Going
in the opposite direction, by treating any (graphical) potential game as an MRF, for any fixed λ > 0,
logistic fictitious play in any potential game converges to an approximate (λ/mini |Ai|)-MSNE of
the potential game. There has been recent work in this direction, which explores the connection
between learning in games and mean-field approximations in machine learning (Rezek et al., 2008).
That work establishes the same connection to logit equilibrium and proposes new algorithms based
on fictitious play for simple mean-field approximation applied to statistical (Bayesian) estimation.

We now return to the connection between arbitrary CE and other higher-order variational ap-
proximations and discuss some computational implications. Besides Kakade et al. (2003), Ortiz
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et al. (2007) proposed the principle of maximum entropy (MaxEnt) for equilibrium selection of
CE in graphical games. They studied several properties of the MaxEnt CE, designed a monotoni-
cally increasing algorithm to compute it, and discussed a learning-dynamics view of the algorithm.
Kamisetty et al. (2011) employed advances in approximate inference methods to propose approxi-
mation algorithms to compute CE. In all of those cases, the general approach is to use ideas from
PGMs to design algorithms to compute CE. The focus of this paper is the opposite direction: em-
ploying ideas from game theory to design algorithms for belief inference in PGMs.

Consider the algorithms of Papadimitriou (2005) or Jiang and Leyton-Brown (2015) (see also
Papadimitriou and Roughgarden (2008) and Jiang and Leyton-Brown (2011)), which we can use to
compute a CE of the MRF-induced game in polynomial time. Such CE will be, by construction,
also a (polynomially-sized) mixture of product distributions. (In the case of Jiang and Leyton-
Brown’s algorithm it will be a mixture of a subset of the joint-action space, which is equivalent to a
probability mass function over a polynomially-sized subset of the joint-action space; said differently,
a mixture of product of indicator functions, each product corresponding to particular outcomes of
the joint-action space.) Hence, both algorithms provide a means to obtain a heuristic estimate of a
local optimum (or critical point) of such a mixture in polynomial time.

Finally, this connection also suggests that we can (in principle) use any learning algorithm
that guarantees convergence to the set of CE as a heuristic for approximate inference. Several
so-called “no-regret” learning algorithms satisfy those conditions. Indeed, we use a variant of a
simple version of a “no-regret” algorithm in our experiments. Because only approximate equilibria
is typically guaranteed in finite time in practice, there may be an additional “gap” in the local
conditions of each player i given in Properties 2, 3, and 4 that equals the player’s “regret” εi ≡
maxx′i

∑
xQ(x) (Ψ(x′i, x−i)−Ψ(x)), where the precise expression forQ depends on the particular

property used. We do not discuss this further here but briefly note that in practice “regret gaps” seem
to have a larger effect than “entropy-difference gaps” and that the effect seems algorithm-dependent.

3.3 Approximate Fictitious Play in a Two-Player Potential Game for Belief Inference

This section presents a game-theoretic fictitious-play approach to estimation of node-marginal prob-
abilities in MRFs. The approach this time is more global in terms of how we use the whole joint-
distribution for the estimation of individual marginal probabilities. The inspiration for the approach
presented here follows from the work of Wainwright et al. (2005). The section concentrates on Ising
models, an important, special MRF instance from statistical physics with its own interesting history.

Definition 1 An Ising model (IM) wrt an undirected graph G = (V,E) is an MRF wrt G such that
Pθ(x) ∝ exp

(∑
i∈V bixi +

∑
(i,j)∈E wi,jxixj

)
where θ ≡ (b,W) is the set of node biases bi’s

and edge-weightswij’s, which are the parameters defining the joint distribution Pθ over {−1,+1}n.

Denote by TG the set of all spanning trees of connected (undirected) graph G = (V,E) that are
maximal with respect to E (i.e., does not contain any spanning forests). If spanning tree T ∈ TG,
we denote by E(T ) ⊂ E the set of edges of T .

Initialize x(1) ← Uniform({−1,+1}n), and for each (i, j) ∈ E, µ̂(1)(i,j) ← x
(1)
i x

(1)
j . At each

iteration l = 1, 2, . . . ,m,

1: T∗ ← arg maxT∈TG

∑
(i,j)∈E 1[(i, j) ∈ E(T )]wijµ̂

(l)
(i,j)

2: T (l) ← Uniform (T∗)
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3: sl ← Uniform({1, . . . , l})
4: X ∗ ← arg maxx∈{−1,+1}n

∑
i∈V bixi +

∑
(i,j)∈E(T (sl))wijxixj

5: x(l+1) ← Uniform (X ∗)
6: for all (i, j) ∈ E do

7: v
(l+1)
(i,j) ← x

(l+1)
i x

(l+1)
j ×

{
1, if MSNE,
1
[
(i, j) ∈ E(T (sl))

]
, if CE

8: µ̂
(l+1)
(i,j) ←

l µ̂
(l)
(i,j)

+v
(l+1)
(i,j)

l+1
9: end for

For each IM’s random-variable index i = 1, . . . , n, set p(m+1)
i = 1

m+1

∑m+1
l=1 1

[
x
(l)
i = 1

]
as the

estimate of the exact IM’s marginal probability pi ≡ Pθ(Xi = 1).

Within the literature on PGMs, Hamze and de Freitas (2004) propose an MCMC approach based
on sampling non-overlapping trees. While our approach has a sampling flavor, its exact connection
to MCMC is unclear at best. Also, the spanning trees that our algorithm generates may overlap.

The game implicit in the heuristic algorithm above is a two-player potential game between
a “joint-assignment” (JA) player and a “spanning-tree” (ST) player. The potential function is
ΨX,T (x, T ) =

∑
i∈V bixi +

∑
(i,j)∈E 1[(i, j) ∈ E(T )]wijxixj . The payoff functions MX and

MT of the JA player and the ST player, respectively, are identical and equal the potential func-
tion ΨX,T (x, T ): formally, MX(x, T ) = MT (x, T ) = ΨX,T (x, T ). Note that the payoff function
of the ST player is strategically equivalent to the function

∑
(i,j)∈E 1[(i, j) ∈ E(T )]wijxixj .

Technically, this is a game with identical payoffs, which are known to have what Monderer and
Shapley (1996) called the fictitious play property: the empirical play of fictitious play is guaranteed
to converge to an MSNE of the game. In fictitious play, each player uses the empirical distribution
of play as an estimate or belief of how the other player would behave in the future, not just the other
player’s last action as in sequential best-reply. Determining a best-response for the ST player is easy
(i.e., using an algorithm for computing maximal spanning tree such as Kruskal’s). Unfortunately
the same is in general not possible for the JA player, whose best-response is as hard as computing a
MAP assignment of another IM with the same graph and (generally non-zero) bias/node parameters,
but a slightly different set of edge-weights. That is why we draw one tree uniformly at random from
the empirical distribution and find a best-response to that tree as a best-response from the JA player.
Such an approach is equivalent to a type of smooth best-response. If both players were to do the
same, simultaneously, the result is a stochastic version of fictitious play or stochastic fictitious play
for short (Fudenberg and Levine, 1999). The empirical distribution of play of stochastic fictitious
play in a game with identical payoffs, or what’s strategically equivalent, any potential game, also
converges to an MSNE of the game (Hofbauer and Sandholm, 2002). In our case, however, we
really have a type of “hybrid” sequential-version, where the ST player is always behaving as in
standard fictitious play, while the JA player is behaving according to a stochastic fictitious play.

Within the context of potential games, while sequential best-reply converges to a PSNE (i.e.,
a joint assignment), fictitious play can converge to an MSNE of the game. Monderer and Shapley
(1996) provide an example in a 2-player 2-action normal-form (coordination) game with identical
payoffs. Said differently, the resulting empirical distribution of play for the JA player may be to
what Monderer and Shapley (1996) themselves call a “purely mixed strategy” (i.e, every action is
played with positive probability).

6



EQUILIBRIA FOR INFERENCE

Figure 1: Evaluation on IMs with 12 × 12 Grids. The top plots are for the so-called “mixed” (Left) and
“attractive” (Right) instances of IMs.For both plots, the x-axis is the largest magnitude of the
edge-weights: i.e., w = max(i,j)∈E |wij |. The y-axis is the average, over 50 randomly generated
IMs, of the average, over all of the 144 variables, of the absolute difference between the estimate
and exact marginal probability for the random variable corresponding to that node. The bottom
plots are from an alt. evaluation of IMs. (Bottom-left plot) Here, the edge-weight magnitude w
is constant for each interaction strength, and nr uses 106 iterations. For all cases, the result is
the average over all values of the probability of attractive interaction q, and over 5 IMs for each
q; except for the case of constant edge-weight magnitude w = 4, which uses 50 IMs for each q.
(Bottom-right plot) Results for each q value with w = 4, with 50 IMs as samples for each.

4. Experiments

In this section we present the results of experiments on the performance of the game-theoretic-
inspired heuristics we propose in this paper for approximate belief inference in MRFs. Our algo-
rithms have very simple implementations. We also compare them with the most popular approxi-
mation algorithms and heuristics, with equally simple implementations.

4.1 Experiments on Randomly-Generated Synthetic Models

The experimental design in terms of the class of IMs is as in Domke and Liu (2013). We con-
sider IMs with d × d simple grid graphs, which are planar (i.e., n = d2). For each value w ∈
{2, 2.5, 3, 3.5, 4}, we generated random IMs with edge-weights wij ∼ Uniform([−w,w]) or wij ∼
Uniform([0, w]) for the “mixed” or “attractive” case, respectively, for each (i, j) ∈ E, i.i.d., and
node biases bi ∼ Uniform([−1,+1]), also i.i.d. for all i, and independent of the edge-weights. We
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also considered for evaluation a class of IMs in which edge-weights have constant magnitude (i.e.,
w = max(i,j)∈E |wij |), but in which we vary the probability q of attractive edge-weights; that is,
given a probability q, the sign of the edge-weight are i.i.d. random variables in which the sign is
positive with probability q. For evaluation using this class, we consider w ∈ {2, 2.5, 3, 3.5, 4}. For
each q, we randomly generated 50 IMs as samples for w = 4, and 5 samples for each w 6= 4.

We evaluated several different so-called “no-regret” algorithms for learning in games, with vary-
ing degrees of equilibrium-convergence guarantees, as approximation for belief inference. Each it-
eration of these algorithms takes roughly the same amount of time as that for Gibbs sampling. One
set of such algorithms we used is based on the multiplicative weight update (MWU) algorithm (Blum
and Mansour, 2007). In our implementation of the MWU algorithm, for each player i at each round
t ≥ 1, we set the probability of playing action xi at round t + 1, which we denote by x(t+1)

i , to

be pt+1(xi) ∝ pt(xi)
(

1− ηt(1− M̄i(xi, x
(t)
−i))

)
, where ηt =

√
ln(2)
t is analogous to a learning

rate in ML, and M̄i is the normalized payoff function for player i. In this case, the players have
no external regret, so we label the algorithm as “mw er”. We also run a variant of mw er with a
constant ηt = 0.01, labeled as “mw er cf,” in which players have approximately no external regret.
The minimization of external regret means mw er has guaranteed convergence to the set of coarse
CE, whereas mw er cf converges to the set of approximate coarse CE. MWU can also be adapted
to minimize swap regret instead of external regret. In that case, it would converge to the set of CE
or approximate CE, depending on if ηt is a constant or not. We include “mw sr” and “mw sr cf”

implementations, the former using ηt =

√
ln(2)
t as above and the latter using a constant ηt = 0.01.

We also consider a simple version of an (approximate) no-swap-regret algorithm by Hart and
Mas-Colell (2000), which we denote as “nr” from now on. We set the number of iterations of the
nr algorithm to 105 for the standard experimental setup, and to 106 for our proposed new evaluation
setting. Also, we only present results for the sequential, “semi-stochastic” fictitious play we propose
for the 2-player potential game for the case of CE only, which we denote as “fp (ce)” from now on.
We set the number of iterations m = 15. (We omit the results for the MSNE-instantiation of that
fictitious play algorithm because they were similar to those for fp (ce), at least for m = 15.)

We compared the different mw-type algorithms, the simple nr algorithm, and our proposed
fp (ce) to (1) standard mean-field approximation (mf), with sequential/axis-parallel updates; (2)
standard belief propagation (bp), with simultaneous updates; (3) TRW (trw); and (4) the Gibbs
sampler (gs). As a baseline (bl), we use the simplest possible estimator from the perspective of
average marginal-error to measure quality: always use 0.5 as the estimate of the exact marginal
distribution of each variable. Among mw-type algorithms, we only present the results of mw er cf,
referred to simply as “mw” from now on, because it outperforms all other types almost consistently.

We evaluate mean field (mf) using sequential/axis-parallel updates, stopping if the max. abs.
diff. in prob. values between iters. is ≤ 10−5, and using a max. num. of iters. = 106. For belief
propagation (bp) we use simultaneous updates, and “smooth” the update based on the avg. of the
current value and the new value in order to “dampen” or at least try to prevent oscillations and im-
prove the likelihood of convergence, stopping if the max. abs. diff. in prob. values between iters.
is ≤ 10−7, and a max. num. of iters. = 105. For tree reweighted message-passing (trw), we use a
constant parameter ρ = 0.55 for all corresponding edge-appearance-prob. parameters ρij’s (Wain-
wright et al., 2005), along with a smooth update and the same stopping criterion as for bp. We use
106 iters. for the Gibbs sampler.
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The top plots in Fig. 1 summarize our results for the most common classes of IMs considered
in the experimental evaluation of approximation algorithms and heuristic for belief inference in the
literature as described above. We perform hypothesis testing for the result in these classes of IMs
using paired z-tests on the individual (i.e., not joint) differences, each with p-value 0.05. Hence, all
the statements are statistically significant with respect to such hypothesis tests. Note that there is no
overall best approximation technique for these classes.
“Mixed” Case (Top-Left Plot, Fig. 1). gs is best for all w in this case. Among the other approxi-
mation algorithms, we observe the following: (1) fp (ce) is worse than bp for w < 3.5, and indis-
tinguishable from bp for w ≥ 3.5; (2) fp (ce) is consistently better than trw; (3) trw is consistently
worse than bp; (4) all methods, except for mf and nr, are consistently better than bl; mf and nr are
consistently worse than bl; (5) mf is better than mr for w ≥ 3, and indistinguishable from each other
for w < 3; (6) mw is worse than fp (ce) for w < 3, but indistinguishable from fp (ce) for w ≥ 3.
“Attractive” case (Top-Right Plot, Fig. 1). There is no clear overall best. We also observe the fol-
lowing: (1) trw is best among all methods for w ≥ 3.0, indistinguishable from gs for w = 2.5, and
worse than gs for w = 2.0; (2) fp (ce) is worse than gs for w = 2.0, but better than gs for w = 4.0,
and indistinguishable from gs otherwise; (3) mf, nr, and bp are consistently indistinguishable from
each other, except for w = 2 where bp is better than nr; (4) bp and bl are consistently indistinguish-
able, except for w = 4.0, where bp is better; (5) mw and fp (ce) are consistently indistinguishable.

The bottom plots in Fig. 1 summarize our experimental results for a class of IMs which appears
to lead to “harder” instances. Note that the standard 95% CIs based on a Gaussian approximation
resulting from CLT do not directly apply here because the averages are over different q values, each
of which may have different distributional properties (e.g., different variances). For w < 4, because
we are computing the average marginal-error over every q, each based on only 5 samples, we use
the bootstrap method to compute the 95% CIs over the overall average for each method and each w,
using 100 samples. For w = 4, because we have 50 samples for each q, we use a properly adapted
version of the standard 95% CIs which modifies the calculation of the overall variance to account for
distributional differences from each q. We perform hypothesis testing for the result in these classes
of IMs using two approaches depending on w. For w = 4, where we draw 50 models as samples for
each q, we use appropriately modified paired z-tests on the individual (i.e., not joint) differences,
each with p-value 0.05. We modify the calculation of the variances resulting from the average
over the samples computed for each q. For w < 4, where we only draw 5 models as samples for
each q, we use bootstrapped-based, individual, paired hypothesis-testing over each pair of aggregate
differences between the methods for each of those values of w; we use 100 bootstrap samples, and
p-value 0.05. All the statements are statistically significant with respect to such hypothesis tests.
Aggregate Results (Bottom-Left Plot, Fig. 1). There is no clear overall best. We also observe the
following: (1) fp (ce) is best among all methods except for whenw = 2.0, where gs is better; (2) trw
is second best among all methods, except for whenw = 2.0, where it is third best (behind fp (ce) and
gs); (3) bp is consistently better than mf and nr except when w = 3.5, where it is indistinguishable
from nr (but still better than mf); (4) mf is consistently worse than bl, except when w = 4.0, where
they are indistinguishable. nr is also consistently worse than bl, except when w = 2.5, where they
are indistinguishable; (5) gs is consistently better than mf, nr, and bl, except when w = 4.0, where
gs and bl are indistinguishable.
Results for Const. Magnitude w = 4 (Bottom-Right Plot, Fig. 1). The results suggest that in fact
such instances of IMs tend to be harder in the sense that even state-of-the-art algorithms such as
TRW are no better than the simple baseline estimation, in which p̂i = 0.5 for all nodes/variables i,
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for all of the non-extreme values of q. In fact, the performance of TRW is almost exactly the same
as baseline across the range of non-extreme values of q. (Note how the plot of the values for trw
and bl are essentially on top of each other for values of q other than 0 or 1.) On the other hand,
note how fp (ce) is consistently better than bl across the whole range of values for q. In fact, fp (ce)
is always in the set of (statistically) best performers for all q with the exception of q = 0.0, where
trw is better. Almost all the methods other than fp (ce) are no better, and often worse, than bl. The
exceptions are that trw beats bl when p ∈ {0.0, 1.0}, bp beats bl when p ∈ {0.0, 0.2}, and gs beats
bl when p = 0.6.

4.2 Experiments on More Realistic Models for (Soft) De-noising of BW Images

We use images of handwritten digits from the popular MNIST dataset (LeCun et al., 1998) to build
IMs for soft de-noising: using the individual marginal probabilities as a confidence measure of the
individual pixel values of the de-noised image. We only do qualitative evaluations here because of
the intractability of exact inference in this case. The results shed some light on the type of inference
problems for which some of the approximation methods proposed here may be most effective.

The MNIST images are 28 × 28 grayscale pixel images of handwritten digits. Therefore, we
construct 28×28 simple planar IMs, again consisting of node biases bi and edge weights wij . First,
we convert the grayscale pixels to black (-1) and white (+1) using a threshold of 0.5. Next, for each
pixel, we find the average value of that pixel across all training images, which is used as the node
bias. Finally, we compute the average product between neighboring pixels, taken across all training
images, regardless of digit label, and use it as the edge weight between those neighboring pixels.

We considered randomly-selected images from the MNIST test dataset, and convert them to
black/white images using the same thresholding method as above. Then, we add noise to the
black/white image by independently flipping each pixel value with some probability p (the “noise
level”). Finally, we modify our existing node biases for each noisy image by taking into account
our “observation” of the noisy image: If I denotes the matrix representation of the noisy black/white test
image, the Gibbs potential of that image’s posterior IM is ΨI(x) ≡

∑
((i,j),(r,s))∈E w(i,j),(r,s)x(i,j)x(r,s) +∑

(i, j)̃b(i,j)(I(i, j))x(i,j) where b̃(i,j)(I(i, j)) = b(i,j) + 1
2I(i, j) ln 1−p

p ; we re-normalize all of the pa-

rameters such that max(i,j) |̃b(i,j)(I(i, j))| = 1.
We can modulate the difficulty of the inference problem with the noise level p as one would

expect from the nature of the inference problem: because of the re-normalization, the magnitude
w’s of the resulting IM posterior increases with p. To see this, first note that the nature of our
estimate of the prior biases is such that |b(i,j)| = 1 because there is likely to be a pixel that is always
black (−1) in the training images by the nature of the dataset. Also, the “observation” term in the
expression of b̃(i,j) decreases to 0 as p → 0.5. Hence, at p = 0.5, the posterior IM is the prior.
Certainly, the problem is becoming harder as p increases to 0.5. Yet, this increase in difficulty is
not unfair to the standard methods because it is not harder than performing inference on the prior
IM: if anything, the re-normalization makes inference in the posterior IM easier. We ran the exact
same algorithms on the constructed Ising models as in the synthetic experiments, though we used a
slightly different number of (max) iterations: 102 for fp (all variants); 104 for bp, nr, and mw (all
variants); 105 for trw and gs; and 106 for mf.
Results. The top line of Fig. 2 shows that in fact the standard methods are unable to handle inference
in the prior IM, as their estimate is that every pixel is black, while the CE-inspired methods do a
more reasonable job: as expected from the nature of the images, the prior should reflect a signifi-
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gs fp(ce) mw sr mw sr cf
p = 0.05 p = 0.15 p = 0.25

Figure 2: Visualization of the Marginal Estimates for the MNIST-based IMs: The top row shows
grayscale images representing the estimates of the prior IM’s marginal probability, for gs, fp(ce),
mw sr, and mw sr cf. The results for bp, mf, and trw are the same as that for gs in this case. The
rest represents the results as the noise level p increases.

cantly more likely chance that the pixels near the center of the image are white. The “fuzziness” near
the center of the image representing the marginal prior estimates for mw sr and mw sr cf, which
are CE-inspired methods, reflects that expectation. Those images also suggest that our albeit ad-hoc
estimation of the IM parameters from the training images based on simple empirical averages for
certain first- and second-moments is reasonable. (Note that MLE is intractable in this setting. The
fuzzy shape looks like an “average” MNIST handwritten digit, a reasonable prior.) The bottom part
of Fig. 2 presents a visualization of the algorithms’ output at noise levels p ∈ {0.05, 0.15, 0.25}.
The grayscale images show the corresponding marginal probability estimate for each individual
pixel/node in the resulting posterior IM. Although we do include the original handwritten digit, it
is not fair to compare the results directly to that original image: We are interested in probabilistic
inference, while the original image is akin to a MAP assignment. The results for p = 0.05 are
all reasonable, and somewhat consistent with the results of the synthetic experiments. As the noise
level increases, the inference done by gs worsens, and the quality of bp, mf, nr, mw er, and mw er cf
deteriorates. At p = 0.25, the image becomes obscured to a point where even a human may not be
able to confidently identify the original digit. Only trw, fp (ce), mw sr, and mw sr cf maintain a
reasonable quality of estimation at this noise level.

Closing Remark. We hope this work will start a conversation on the synergy between equilibrium
computation and belief inference, which appears to be an intriguing and potentially fruitful research
direction for both mathematical, algorithmic, and computational game-theory and PGMs.
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