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Abstract
We present the MeDIL Python package for causal modelling. Its current features focus on (i) non-
linear unconditional pairwise independence testing, (ii) constraint-based causal structure learning,
and (iii) learning the corresponding functional causal models (FCMs), all for the class of measure-
ment dependence inducing latent (MeDIL) causal models. MeDIL causal models and therefore the
MeDIL software package are especially suited for analyzing data from fields such as psychometric,
epidemiology, etc. that rely on questionnaire or survey data.
Keywords: causal modelling; Python; structure learning; latent variable model; nonlinear inde-
pendence; edge clique cover; generative adversarial network.

1. Introduction

Markham and Grosse-Wentrup (2020) introduce measurement dependence inducing latent (MeDIL)
causal models. These models have disjoint sets of (unobserved) latent variables and (observed) mea-
surement variables. In order for a set of random variables to be considered measurement variables,
it must satisfy the assumption of strong causal insufficiency, i.e., none of the measurement variables
may (even indirectly) cause one another—thus, any probabilistic dependence between them must
be mediated by latent causes. The assumption of strong causal insufficiency is especially applica-
ble in settings such as psychometric instrument questionnaires, and MeDIL causal models can, for
example, be thought of as a causally interpretable factor analysis.

Graphically, MeDIL causal models (MCMs) are represented as directed acyclic graphs with
disjoint sets of vertices representing the latent and measurement variables, where the measurement
variables are represented as sink vertices (i.e., have no outgoing edges). These MCMs can be
inferred by sampling a set of measurement variables as follows:

1. perform (nonlinear) independence tests on samples to generate undirected dependency graph
(UDG) over measurement variables

2. perform causal structure learning by applying an edge clique cover finding algorithm to the
UDG, resulting in a graphical MCM

3. use generative adversarial networks to learn a functional MCM (i.e., learn the functional
relations corresponding to edges in the to the graphical MCM)

See (Markham and Grosse-Wentrup, 2020) for more details, supporting theory, and related work for
steps 1 and 2, and see (Chivukula et al., 2020) for those of step 3.
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2. Features

MeDIL is a free/libre software package written in Python (Van Rossum and Drake, 2009) and makes
extensive use of NumPy (Oliphant, 2006), which is required for all three submodules. For installa-
tion instructions, documentation, and examples, visit https://medil.causal.dev

We begin with all the necessary import statements and generating the sample data set:

1 # for making sample data
2 import numpy as np
3 from medil.examples import triangle_MCM
4 from medil.functional_MCM import gaussian_mixture_sampler
5 from medil.functional_MCM import MeDILCausalModel # also used in

step 3↪→

6

7 # for step 1
8 from medil.independence_testing import hypothesis_test,

dependencies, distance↪→

9

10 # for step 2
11 from medil.ecc_algorithms import find_clique_min_cover as find_cm
12

13 # for step 3
14 from pytorch_lightning import Trainer
15 from medil.functional_MCM import uniform_sampler, GAN
16

17 # for visualization
18 import medil.visualize as vis
19 from medil.independence_testing import distance
20

21

22 # make sample data
23 num_latent, num_observed = triangle_MCM.shape
24

25 decoder = MeDILCausalModel(biadj_mat=triangle_MCM)
26 sampler = gaussian_mixture_sampler(num_latent)
27

28 input_sample, output_sample = decoder.sample(sampler,
num_samples=10000)↪→

29 np.save("measurement_data", output_sample)

2.1 Independence Testing

The independence testing submodule performs permutation-based hypothesis testing using
nonlinear distance correlation from the dcor package Carreño (2020).

30 # step 1: estimate UDG
31 p_vals, null_corr = hypothesis_test(output_sample.T,

num_resamples=100)↪→
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32 dep_graph = dependencies(null_corr, 0.1, p_vals, 0.1)
33 # dep_graph is adjacency matrix of the estimated UDG

However, any other preferred way of acquiring the (unconditional) pairwise dependencies can
be used, and the resulting UDG can be plugged directly into step 2.

2.2 Causal Structure Learning

The ecc algorithms submodule provides an implementation of an algorithm for finding a
clique-minimal edge clique cover of a given UDG. The result is an biadjacency matrix that provides
the minimal number of latent variables and their connections to measurement variables. It only uses
NumPy, though part of the implementation contains code adapted from NetworkX (Hagberg et al.,
2008) for finding maximal cliques.

34 # step 2: learn graphical MCM
35 learned_biadj_mat = find_cm(dep_graph)

2.3 FCM Learning

Given a set of measurement samples and the causal structure learned in step 2, the functional MCM
submodule uses generative adversarial networks (GANs) with the maximum mean discrepancy
(MMD) loss to learn a nonlinear functional causal model. It defaults to using a uniform distri-
bution for latent variables and a normal distribution for the exogenous variables, but any prior can
be specified. The GANs are built using PyTorch Lightning (Falcon, 2019).

36 # step 3: learn functional MCM
37 num_latent, num_observed = learned_biadj_mat.shape
38

39 decoder = MeDILCausalModel(biadj_mat=learned_biadj_mat)
40 sampler = uniform_sampler(num_latent)
41

42 minMCM = GAN("measurement_data.npy", decoder,
latent_sampler=sampler, batch_size=100)↪→

43 trainer = Trainer(min_epochs=1000)
44 trainer.fit(minMCM)

2.4 Visualizing and Evaluating Results

The visualize submodule uses Matplotlib (Hunter, 2007).

45 # confirm given and learned causal structures match
46 vis.show_dag(triangle_MCM)
47 vis.show_dag(learned_biadj_mat)
48

49 # compare plots of distance correlation values for given and learned
MCMs↪→
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50 generated_sample = decoder.sample(sampler, 1000)[1].detach().numpy()
51 generated_dcor_mat = distance(generated_sample.T)
52

53 vis.show_obs_dcor_mat(null_corr, print_val=True)
54 vis.show_obs_dcor_mat(generated_dcor_mat, print_val=True)
55

56 # get params for learned functional MCM; replace '0' with any 'i' in
{0, ..., 5} to get params for any corresponding M_i↪→

57 print(decoder.observed["0"].causal_function)

3. Future Development

Immediate further development will consist of (1) integrating other measures of independence, such
as the Hilbert-Schmidt Independence Criterion, and (2) implementing/integrating other exact and
heuristic edge clique cover finding algorithms, e.g., for minimizing the number of functions in
the MCM instead of the number of latents, or other partial or heuristic solutions for use on very
large networks. Future development will depend on the direction of our theoretical causality work,
but is likely to include clustering samples coming from mixtures of MCMs, and learning causally
consistent transformations between micro- and macro-models.
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