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Abstract
Learning the structure of a Bayesian network is an NP-hard problem and exact learning algorithms that are
guaranteed to find an optimal structure are not feasible with large number of variables. Thus, large-scale
learning is usually done using heuristics that do not provide any quality guarantees. We present a heuristic
method that scales up to networks with hundreds of variables and provides quality guarantees in terms of
an upper bound for the score of the optimal network. The proposed method consists of two parts. First, we
simplify the problem by approximating local scores using so-called edge scores. With the edge scores learning
an optimal Bayesian network structure is equivalent to finding the maximum acyclic subgraph. Second,
we solve the maximum acyclic subgraph problem fast using integer linear programming. Additionally, we
choose the approximation in a specific way so that an upper bound for the score of an optimal network can be
obtained.
Keywords: Bayesian networks; Structure learning; Integer Linear Programming.

1. Introduction

Bayesian networks are a type of probabilistic graphical model widely used in machine learning. They were
originally introduced by Pearl (1988). Bayesian networks consist of two parts: a structure and parameters.
The structure, represented by a directed acyclic graph (DAG), expresses conditional independencies between
variables and the parameters specify local conditional distributions.

Often, the Bayesian network is not given but we learn it from data. The process of learning a Bayesian
network is twofold: first, we learn the structure and then we learn the parameters of the local distributions. In
this paper, we will study learning the structure of a Bayesian network. Specifically, we solve the Bayesian
network structure learning (BNSL) problem using the so-called score-based approach where each structure is
assigned a score based on how well it fits to the data and the goal is to find a structure that maximizes the
score.

Exact structure learning algorithms are guaranteed to find an optimal structure, that is, a structure that
maximizes the score. Exact structure learning is NP-hard (Chickering, 1996) so it is unlikely that exact
algorithms scale-up to large networks in worst case scenarios. Even though sometimes even networks with
few dozens of variables are too large for state-of-the-art exact algorithms (Cussens, 2011), they can solve
easy instances with up to few hundred variables. When the exact algorithms cannot handle a dataset, one
typically resorts to various scalable heuristics (Scanagatta et al., 2015; Tsamardinos et al., 2006). A downside
of using heuristics is that they do not provide any guarantees for the quality of the result.

We present a new structure learning algorithm that attempts to bridge the gap between these two extremes.
Specifically, we speed up the algorithm by relaxing the requirement of guaranteeing the optimal DAG. At the
same time, we are still able to give an estimate of the quality of the found solution.

Our method builds upon GOBNILP (Cussens, 2011), the state-of-the-art exact algorithm, which is
based on integer linear programming (ILP). In score-based structure learning, it is common to use so-called
decomposable scores which means that the score of a structure is a sum of local scores for node-parent set
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pairs. Many algorithms, including GOBNILP, require that these local scores are computed as a preprocessing
step and given as an input to an optimization algorithm. One of the challenges using GOBNILP is that a
large number of local scores makes solving the integer linear program slower. We tackle this problem by
approximating local scores with approximate scores for each potential edge and thereby restricting the size of
the input to a quadratic number of scores. Given edge scores, finding the optimal structure reduces to the
maximum acyclic subgraph (MAS) problem; hence, we call our method BNSL2MAS. Also the MAS problem
is NP-hard (Karp, 1972) but in practice it is much faster to solve.

A key challenge in our approach is the quality of the approximation. To enable us to assess the quality of
the found network, we learn the approximate scores under the constraint that the approximate score (sum
of the edge scores) for each node-parent set pair upper bounds the local score. This guarantees that the
approximate score of the optimal solution of the MAS problem gives an upper bound for the score of the
optimal solution of the BNSL problem.

The above-described version of BNSL2MAS is fast but it has a considerable weakness: It returns networks
that are dense and upper bounds are too high to have any practical value. To get tighter upper bounds, we
can add various additional constraints (described in Section 3.3). However, tightening the upper bound does
not come for free. It leads to a tradeoff between speed and tightness of the bound. Our empirical results are
mixed: We observed that the variants of BNSL2MAS that were fast did not give usable upper bounds. On the
other hand, the variants that gave non-trivial upper bounds were slow and sometimes returned graphs which
were of poorer quality.

Related work. There is limited amount of “approximate” algorithms for Bayesian network structure
learning. Most notably, while integer linear programming (ILP) -based algorithms (Jaakkola et al., 2010;
Cussens, 2011) are usually used as exact algorithms, they can be used as anytime algorithms. That is, it is
possible to interrupt the algorithm at any time and output the best DAG found so far. Furthermore, ILP solves
relaxations and optimal solutions for the relaxations give upper bounds for the score of the optimal DAG.

Other works include an approximation algorithm developed by Ziegler (2008). The algorithm gives
k-approximation where k is the maximum size of the parent set. Also greedy equivalence search (GES)
(Chickering, 2002) can be seen as a heuristic with quality guarantees. However, the guarantees hold only
asymptotically.

Recently, there has also been work on developing anytime algorithms for Bayesian network structure
learning (see, e.g., Lee and van Beek (2017); Scanagatta et al. (2017)). These algorithms typically consist of
sampling node orders and then finding a best DAG that is compatible with the order.

2. Preliminaries

2.1 Score-based Structure Learning

Let G = (N,A) be a DAG where N is the node set and A is the arc set. We denote the parent set of node v
in G by Av. Let n denote the cardinality of N .

The score of a DAG measures how well the DAG fits to the data. A score is decomposable, if the score of
a DAG G can be written as

S(G) =
∑
v∈N

Sv(Av),

where Sv(Av) is the local score of node v given the parent set Av. Commonly used scores such as BDe,
BDeu, and BIC are decomposable. Our approach works for any decomposable score.

The Bayesian network structure learning (BNSL) problem with a decomposable score can be defined as

argmax
G

∑
v

Sv(Av)
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s.t. Av representing a DAG.

Note that Av refers to the parent set of v in the graph G.
Without any restrictions, the input of the BNSL problem would be 2n−1 local scores for every v. Generally,

computing such a number of local scores is not feasible. Thus, one typically restricts the number of local
scores. To this end, let Fv denote the set of potential parent sets of the node v. We treat Sv(Av) = −∞ for
all Av 6∈ Fv. One common way to restrict the size of Fv is pruning, that is, removing or not computing local
scores for parent sets that cannot be a part of an optimal DAG. A commonly used pruning rule is based on the
observation that if Sv(W ) > Sv(W

′) and W ⊂W ′ then W ′ cannot be the parent set v in the optimal graph.
Another way to restrict the number of local scores is to assume that the maximal size of the parent sets is
bounded by a small integer k.

We note that for large data sets, the number of local scores to compute becomes quickly restrictive
even for a small k. For example, with 500 nodes and k = 3 one would need to compute approximately
5004 ≈ 6× 1010 local scores. Thus, heuristics that scale up to thousands of nodes, such as Scanagatta et al.
(2015), compute local scores greedily online. We concentrate on slightly smaller networks and assume that
the local scores are given (though we do assume that they have been pre-pruned).

2.2 Integer Linear Programming Formulation

The state of the art in exact score-based structure learning in Bayesian networks is based on integer linear
programming (ILP) (Jaakkola et al., 2010; Cussens, 2011). In an integer linear programming formulation,
one introduces a set of binary variables. The current state of the art involves the so-called “family variables”;
a family variable Iv(W ) takes value 1 if W is the parent set of v in the DAG, and 0 otherwise. Now the
optimization problem can be written as

argmax
Iv(W )

∑
v,W

Sv(W )Iv(W )

s.t. the variables Iv(W ) represent a DAG.

We note that the constraints guaranteeing that the family variables Iv(W ) represent a DAG can be formulated
in several different ways. GOBNILP uses so-called cluster constraints to guarantee acyclicity1.

We note that the ILP formulation has one variable for each potential parent set in Fv. The number of ILP
variables can affect the optimization speed drastically and be the performance bottleneck in practice when the
number of potential parent sets is large. This is a serious challenge because with a large number of nodes we
tend to have lots of potential parent sets even when indegrees are small. Next, we will present edge scores
that are designed to alleviate this problem.

3. Proposed Method

In this section, we will introduce the BNSL2MAS method for the BNSL problem. As mentioned in
Section 2.1, we assume that we are given local scores Sv(Av) for v ∈ N and Av ∈ Fv and our goal is to find
a DAG G that maximizes the sum of local scores. We do not directly solve the BNSL problem but we first
approximate the local scores using edge scores and thereby convert the problem to the maximum acyclic
subgraph problem which is easier to solve in practice.

1. These constraints are based on the observation that in a DAG, every subset of nodes has at least one node that does not have any
parents in that subset.
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3.1 Edge Scores

The core idea of our work is to approximate local scores Sv(W ) using a sum of edge scores ev(w). The
rationale behind this approximation is that the resulting ILP formulation has only a quadratic number of
variables instead of potentially an exponential number of variables. Therefore, it is expected that finding the
DAG that maximizes the approximate score is faster than finding the DAG that maximizes the original score.

Formally, we define an approximate local score for a node v and a parent set W by S̃v(W ) = bv +∑
w∈W ev(w) where bv is the bias of v and ev(w) are the edge scores. This approximate score is additive,

that is, each approximate local score is a sum of individual edge score contributions from the parent nodes w
with respect to the node v, plus a bias that represents the score estimation of v having no parent at all.

Given local scores Sv(W ), we want to estimate the values taken by the variables bv and ev(w). To
this end, we define a loss function L

(
Sv(W ), S̃v(W )

)
. In our experiments, we have used the absolute loss:

L
(
Sv(W ), S̃v(W )

)
= |Sv(W )− S̃v(W )| and the squared loss: L

(
Sv(W ), S̃v(W )

)
= (Sv(W )− S̃v(W ))2.

However, other loss functions are also possible. Furthermore, in order to get approximation guarantees, we
constrain the approximate local scores to always upper bound the true local scores.

Now, for each node v its bias and edge scores can be estimated solving

argmin
bv ,ev(w)

∑
W∈Fv

L
(
Sv(W ), S̃v(W )

)
s.t. Sv(W ) ≤ S̃v(W ) ∀W ∈ Fv (1)

where S̃v(W ) = bv +
∑

w∈W ev(w).
The approximation guarantees hold for any loss function. The tightness of the bounds and the time

requirements of solving the optimization problem, however, may be affected by the choice of the loss function.
The quadratic loss function results in a quadratic optimization problem which can be solved efficiently

with solvers like GUROBI. In practice, even for large and dense datasets, the estimation of approximate
scores is very fast compared to solving the structure learning problem itself. This is mainly due to the bias
and edge scores being continuous variables, as well as the models for each child node v being independent
meaning we can easily parallelize them.

There are at most n(n− 1) edge scores. We note that the above formulation yields a non-zero edge score
ev(w) only when w is a member of at least one potential parent set, that is, ev(w) is non-zero only if w ∈W
for some W ∈ Fv. This can further simplify the following structure learning problem, especially when the
underlying DAG is sparse.

3.2 Maximum Acyclic subgraph

Given the edge scores, solving BNSL reduces to solving an instance of the maximum acyclic subgraph (MAS)
problem which is still NP-hard, as mentioned before. In practice, however, MAS can be solved significantly
faster than BNSL.

Formally, the maximum acyclic subgraph (MAS) problem is defined as follows. We are given a directed
graph G′ = (N,A′) with a weight s(a) assigned for each arc a ∈ A′. The goal is to find a directed acyclic
graph G = (N,A) such that A ⊆ A′ with maximum total weight

∑
a∈A s(a). We note that solving MAS is

equivalent to solving the feedback arc set (FAS) problem where one is given a directed weighted graph and
the goal is to remove the lightest set of arcs to make the graph acyclic2.

We solve MAS using integer linear programming. Our ILP formulation of MAS is as follows: consider
the weighted graph whose edges are weighted by the edge scores ev(w). Now, for each directed edge (w, v)

2. MAS and FAS are complementary: the feedback arc set equals to A′ \A.
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define a binary variable Jv(w) which takes value 1 if w is a parent of v in the DAG, 0 otherwise. Then the
optimization problem can be written as

argmax
Jv(w)

∑
v,w

ev(w)Jv(w)

s.t. the Jv(w) representing a DAG.

There are several alternative ways to guarantee that the resulting graph is a DAG. We solve MAS using
the lazy set cover ILP formulation as in Baharev et al. (2015)3.

The constraints to guarantee acyclicity can be formulated as follows. Let c be a directed cycle with length
|c|. Let C be the set of cycles in G′. If G is a DAG then at least one arc of each cycle has to be absent from G.
Therefore, to ensure that G is a DAG, we can add the following constraints: for each cycle c ∈ C it holds that∑

(w,v)∈c

Jv(w) ≤ |c| − 1.

One challenge with this formulation is that the ILP contains one constraint for each cycle in G′. In large
or dense graphs there are potentially lots of cycles and it is usually not feasible to explicitly include all of
them. In this case, we use the same approach as Cussens (2011) and add constraints lazily as cutting planes.
That is, we start with a relaxation and whenever we find a feasible solution for the relaxation, it is checked
whether the solution is acyclic. If not, we use the cutting plane approach and add at least one cycle constraint
that make the found solution infeasible. In this approach, finding good cutting planes is essential for solving
the problem quickly. We use a simple heuristical approach: for each edge in the found graph, we find the
shortest cycle that goes through the edge (if the edge is a part of a cycle).

In Section 3.1, we constrained the approximate local scores to upper bound the local scores. Theorem 1
implies that the approximate score of the DAG found by solving the MAS problem upper bounds the (true)
score of the DAG found by solving the BNSL problem.

Theorem 1 Let Gopt be the optimal DAG of the BNSL problem and G̃opt be the optimal DAG of the MAS
problem. Furthermore, let Sv(W ) ≤ S̃v(W ) ∀v ∈ N ∀W ∈ Fv. Then,

S(Gopt) ≤ C + S̃(G̃opt),

where C =
∑

v∈N bv is the sum of bias terms.

Proof For any graph G = (N,A), we have that

S(G) =
∑
v∈N

Sv(Av)

≤
∑
v∈N

S̃v(Av)

=
∑
v∈N

(
bv +

∑
w∈Av

ev(w)
)

= C +
∑
v∈N

∑
w∈Av

ev(w)

= C + S̃(G).

3. Baharev et al. (2015) give their formulation for FAS problem but we adapt it for the MAS problem.
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Because G̃opt maximizes the approximate score S̃, it follows that S̃(Gopt) ≤ S̃(G̃opt). Finally, because the
approximate score upper bounds the local score, we get the upper bound guarantee

S(Gopt) ≤ C + S̃(G̃opt).

3.3 Tightening the Upper Bound

One challenge with the MAS formulation above is that the obtained networks tend to be dense. This happens
because the edge scores do not penalize complexity and thus MAS keeps adding edges with positive weights
as long as they do not induce cycles.

This denseness has two negative consequences. First, the found network G̃opt, which is optimal with
respect to approximate scores S̃, may not have a high score with respect to the true scores S. Second, the
upper bound depends on the weights of the included edges, adding an extra edge makes the bound looser. As
a result, the upper bounds provided by the naive formulation above are usually not very useful.

Fortunately, we can alleviate these problems. First, we note that if the parent set of v in G̃opt is not among
the candidate parent sets, that is, Av 6∈ Fv, we can improve the score by replacing Av by its highest-scoring
subset with respect to true local scores, that is, argmaxA′

v⊂Av Sv(A
′
v). In other words, given G̃opt = (N,A)

we can construct a graph G̃′opt = (N,A′) such that G̃′opt maximizes the score S(G̃′opt) subject to A′ ⊆ A.
Because removing edges cannot make an acyclic graph cyclic, we can select the parent set of each node
independently and therefore the running time is proportional to the size of Fv. We refer to this variant of the
BNSL2MAS method as BNSL2MAS (Base).

Second, we can tighten the upper bound by adding additional constraints. A simple way is to bound the
maximum indegree of G̃opt. If the size of the largest parent set in Fv is k then we can add constraints∑

w∈N\{v}

Jv(w) ≤ k

for all v. A weakness of this approach is that it is still possible that the parent set of v in G̃opt is not among
the candidate parent sets: Av 6∈ Fv. We refer to this variant as BNSL2MAS (Bounded parent set).

A more sophisticated approach is to restrict the solutions of the MAS problem to be DAGs whose parent
sets are among candidate parents sets. That is, Av can be the parent set of v in G̃opt only if Av ∈ Fv. To
achieve this, we can add an additional binary variable Kv(W ) for all W ∈ Fv. The variable Kv(W ) equals
to 1 if and only if W is the parent set of v. This can be achieved by adding the following constraints:∑

w∈W
Jv(w) ≥ |W |Kv(W ),∑

w 6∈W
Jv(w) ≤ n− nKv(W ).

Then, we add a constraint that each node has exactly one parent set, that is,
∑

W∈Fv
Kv(W ) = 1. We refer

to the variant of BNSL2MAS that includes all the candidate parent set constraints as BNSL2MAS (Complete
candidate parent).

Another way to restrict the parent sets to candidate parent sets is to add the following constraints: ∀v ∈ N
and ∀W 6∈ Fv it is required ∑

w∈W
Jv(w) ≤

∑
w′∈Ŵ\W

Jv(w
′) + |W | − 1,
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Name n Local scores Name n Local scores
autos 26 25,238 letter 17 18,841
carpo 100 60 5,068 mushroom 23 13,025
carpo 10000 60 16,391 Pigs 10000 441 304,219
Diabetes 1000 413 21,493 wdbc Bde 31 13,473
Diabetes 10000 413 262,129 wdbc BIC 31 14,613

Table 1: Data sets with the number of nodes n and the number of local scores

where

Ŵ =
⋃

W ′∈Fv :W ′⊃W
W ′.

Intuitively, this means that if the parent set of v contains a set W 6∈ Fv then the parent set must include
at least one additional node. The additional node must be a member of some candidate parent set that is a
superset of W . We note Ŵ = N \W would be also a valid constraint but the above mentioned constraint
is tighter. The previous formulation is not completely unproblematic: We need to have one constraint for
every W 6∈ Fv which means that usually we will have exponential number of constraints. Thus, adding all
of them is typically not possible. Fortunately, we can again add the constraints as cutting planes during the
optimization process. Whenever we find a graph G with Av 6∈ Fv, we can add the corresponding constraint.
We refer to the variant that adds candidate parent set constraints lazily as cutting planes as BNSL2MAS (Lazy
candidate parent).

It should be noted that removing the constraint Sv(W ) ≤ S̃v(W ) in Equation 1 that forces the approxi-
mate score to be an upper bound for the corresponding true score would make the loss smaller and thereby
the approximation would be tighter. However, the constraint is essential for the quality guarantees and after
removing it we could not guarantee that the solution of the MAS problem would upper bound the score of the
optimal solution of the BNSL problem.

4. Experiments

4.1 Test Setup

4.1.1 IMPLEMENTATION

The method was implemented using Python. We used Gurobi (version 9.0) to solve linear, quadratic, and
integer linear programs.

4.1.2 DATA SETS

We use a subset of the data sets listed in the GOBNILP home page4. As we are interested in scalability of
our method, we restrict our analysis to the most challenging data sets. To this end, we selected data sets for
which GOBNILP used at least 100 seconds (or GOBNILP was not able to find the optimal network at all).
The selected data sets can be seen in Table 1.

We used the same scoring criteria that were used in the original data sets, that is, either BDe or BIC. For
wdbc, we have two versions, one for each scoring criterion.

4. https://www.cs.york.ac.uk/aig/sw/gobnilp/
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4.1.3 EXPERIMENTS

In Section 3, we proposed several different variants. The goal of this experiment is to investigate which of the
variants of the proposed method work well. We consider the following variants.

For computing edge scores, we compare two loss functions: absolute loss and squared loss.
For different variants of BNSL2MAS, we consider BNSL2MAS (Base), BNSL2MAS (Bounded parent

sets), BNSL2MAS (Complete candidate parents), BNSL2MAS (Lazy candidate parents). As mentioned
in Section 3.2, we can solve one of the two equivalent optimization problems: maximum acyclic subgraph
(MAS) or feedback arc set (FAS). Both formulations give the same result (if we run them long enough to the
optimality) but the running time can be different. Therefore, if we run the algorithms for a fixed time and at
least one of them does not finish then we can also get different graphs. Thus, we compare both MAS and
FAS formulations.

Performance measures. In all of the experiments, we measured the performance of the methods by
scores of found DAGs and running time. For ILP-based methods, we also recorded upper bounds. For the
proposed method, we computed both the approximate score S̃ and the “true” score S for each DAG.

All methods had a time limit of one hour of running time. We evaluated methods in anytime fashion:
Whenever a method found a DAG that has higher score than any of the previously found DAGs, we recorded
the score and time of the newly found DAG. Furthermore, all algorithms were given pre-computed local
scores5 as an input and computing the local scores did not count towards the running time except for hill
climbing, for which raw datasets were used.

Benchmarks. We benchmark the proposed method against both an exact algorithm and two heuristic
algorithms. As the exact benchmark, we use GOBNILP (Bartlett and Cussens, 2017) which can scale up to
networks with few hundred variables if the network is sparse.

As another benchmark we use the greedy hill climbing. In greedy hill climbing, there are three operators
that are used to improve the DAG: adding a new edge, removing an existing edge or flipping an edge. The
greedy hill climbing starts with an empty DAG and greedily applies the operator that increases the score most.
This is continued until none of the operators increases the score of the DAG. We benchmarked hill climbing
from bnlearn (Scutari, 2010), an optimized implementation that uses score caching for maximized efficiency.

Our last benchmark is WINASOBS (Scanagatta et al., 2017), where an ordering-based search algo-
rithm is coupled with an iterated local search meta-heuristic that uses a custom window insertion operator.
WINASOBS currently yields state-of-the-art performance on large graphs with several thousands of nodes.

Computer. Tests were conducted using a computer with Intel(R) Core(TM) i5-7500 processor with four
3.40GHz cores. The computer had 32Gb RAM and its operating system was Ubuntu 18.04.4 LTS (64bit).

4.2 Results

4.2.1 COMPUTING EDGE SCORES

We computed edge scores with both squared and absolute loss. We observed that computing the edge scores
is very fast. In the case of squared loss, for all but two of our data sets computing edge scores took less than 2
seconds in total. The two most time-consuming data sets were Diabetes 10000 and Pigs 10000 for which
computing the edge scores took 35 and 72 seconds, respectively. Computing edge scores with absolute loss is
even faster: computing edge scores for any data set took always less than 2 seconds.

4.2.2 BNSL2MAS

Next, we will review some of the experimental results. Due to space constraints, we show only part of the
results. Let us start by analysing the BNSL2MAS (Base). Results from selected data sets are shown in

5. Loaded from https://www.cs.york.ac.uk/aig/sw/gobnilp/data/.

8

https://www.cs.york.ac.uk/aig/sw/gobnilp/data/


(a) (b)

(c) (d)

(e)

Figure 1: Scores and running times for BNSL2MAS (Base) and BNSL2MAS (Lazy candidate parents) with
the benchmarks. Scores are the score of the best DAG found at a given data point. Edge scores were
computed using squared loss. Marker at the end of a curve denotes that the method has finished
(otherwise, the execution was stopped at the time limit). Data sets: (a) autos, (b) Diabetes 10000,
(c) mushroom, (d) Pigs 10000, and (e) wdbc.

Figure 1. To help us to put the scores and bounds in perspective, we compare them to naive bounds. As a
naive lower bound we use the score of the empty graph. To get a naive upper bound for the optimal DAG, we
select the highest scoring parent set for each node and compute the sum. Clearly, there cannot be a DAG
that has a higher score. Furthermore, we show the hill climbing algorithm, WINASOBS, and GOBNILP as

9



(a) (b)

(c)

Figure 2: Score and running times for BNSL2MAS (Complete candidate parents) and BNSL2MAS (Lazy
candidate parent) with benchmarks. Scores are the score of the best DAG found at a given data
point. Edge scores were computed using squared loss. Marker at the end of a curve denotes that
the method has finished (otherwise, the execution was stopped at the time limit). Datasets: (a)
carpo 100, (b) mushroom, and (c) Pigs 10000.

benchmarks. In the plots, whenever a curve for some method is missing that means that the method did not
find any feasible solutions before the time limit.

Our first observation is that BNSL2MAS (Base) is very fast. With the absolute loss, the slowest cases were
the networks with over 400 nodes. Solving the MAS problem took less than 11 seconds for Diabetes 10000
and less than 25 seconds for Pigs 10000. With squared loss, the algorithm was even faster: running times for
Diabetes 10000 and Pigs 10000 were less than 3 seconds and 13 seconds, respectively.

If we take a look at the DAGs found, we can see that, indeed, as mentioned in Section 3.3, solving
BNSL2MAS without additional constraints for parent sets leads to dense networks. For example, the
mushroom data set which consist of 23 nodes. The DAG found has 228 edges (average in-degree is 9.9) and
maximum in-degree is 20. A graph with 23 nodes can have at most 253 edges. Thus, the found graph is
almost complete. In comparison, the optimal graph found by GOBNILP has only 67 edges and maximum
in-degree 4. As each edge that is added has a positive score, the upper bound is always much higher than the
naive upper bound. Thus, in this case we cannot really claim that the base version has quality guarantees.

To evaluate the quality of the DAGs found by BNSL2MAS (Base), we selected the highest scoring
candidate parent set for each node among the parents in the found graph and computed the true score of
this DAG. The base version seems to perform roughly as well as the hill climbing heuristic: With squared
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loss, the base version found a higher scoring network 4 times out of 10. WINASOBS found a higher-scoring
DAG for all of the data sets. WINASOBS also finds good solutions very fast. We observe that the curves for
WINASOBS in Figure 1 are almost horizontal indicating that there is no significant improvement after the
initial phase.

To get tighter bounds, we can use either bounded parent set constraints or candidate parent set constraints.
Selected results comparing BNSL2MAS (Complete candidate parent) and BNSL2MAS (Lazy candidate
parent) are shown in Figure 2. The results are mixed. Still sometimes the upper bound is higher than
the naive upper bound. Both of the versions are significantly slower than BNSL2MAS (Base). However,
neither of them consistently overperforms the other. As a rule of thumb, BNSL2MAS (Complete candidate
parent) seems to perform better on small data sets and significantly slow down with larger data sets; this is
natural because it has one constraint for every existing node-parent set pair in the local scores. Furthermore,
sometimes BNS2MAS (Complete candidate parent) and BNSL2MAS (Lazy candidate parent) are faster than
GOBNILP and sometimes they are slower. We also note that in many cases BNSL2MAS (Base) finds better
solutions than both BNSL2MAS (Complete candidate parent) and BNSL2MAS (Lazy candidate parent).

Due to space constraints, we do not show any plots about the performance of BNSL2MAS (Bounded
parent sets). However, in general BNSL2MAS (Bounded parent sets) ends up somewhere in the middle of
BNSL2MAS (Base) and the candidate parent set variants with respect to speed and loses to BNSL2MAS
(Base) almost always with respect to the score. We also compared MAS and FAS version of BNSL2MAS
(Plots not shown). There were no systematic differences, one was faster than the other for about half of the
time. We also note that the differences between MAS and FAS were reasonably small.

5. Discussion

On the positive side, we observed that approximating local scores with edge scores and converting BNSL to
MAS can significantly speed up learning Bayesian network structures. BNSL2MAS (Base) is very fast and
could work with even larger data sets than what were considered in this paper. However, in practice the base
version behaves like an order-finding heuristic and does not have quality guarantees.

Our empirical results are somewhat disappointing with respect to quality guarantees. The main result
is that developing a scalable method with good quality guarantees seems to be a difficult task. There is a
clear tradeoff: Adding seemingly simple constraints to tighten the upper bounds makes the optimization
dramatically more difficult increasing the running time by several orders of magnitude even though the size
of the search space decreases. We also observed that having quality guarantees can actually decrease the
quality of the found solutions! The observation that additional constraints can significantly slow down ILP is
not unique. For example, ILP-based methods of learning bounded tree-width Bayesian networks (Parviainen
et al., 2014; Scanagatta et al., 2016) are orders of magnitude slower than GOBNILP even though bounded
tree-width Bayesian networks are a small subset of all Bayesian networks. These results seem to suggest that
the most practical version of BNSL2MAS is BNSL2MAS (Base).

We also note that the state-of-the-art anytime algorithm WINASOBS clearly outperformed BNSL2MAS.
The main weakness of BNSL2MAS seems to be that the additive approximation is rather limiting. Thus,
making BNSL2MAS really competitive would require finding a less restrictive approximate score without
significantly increasing running time.
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