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Abstract

The last decades improvements in processing abilities have quickly led to an increasing use of
data analyses implying massive data-sets. To retrieve insightful information from any data driven
approach, a pivotal aspect to ensure is good data quality. Manual correction of massive data-sets
requires tremendous efforts, is prone to errors, and results being really costly. If knowledge in a
specific field can often allow the development of efficient models for anomaly detection and data
correction, this knowledge can sometimes be unavailable and a more generic approach should be
found. This paper presents a novel approach to anomaly detection and correction in mixed tabu-
lar data using Bayesian Networks. We present an algorithm for detecting anomalies and offering
correction hints based on Jensen scores computed within the Markov Blankets of considered vari-
ables. We also discuss the incremental corrections of detection model using user’s feedback, as
well as additional aspects related to discretization in mixed data and its effects on detection effi-
ciency. Finally we also discuss how functional dependencies can be managed to detect errors while
improving faithfulness and computation speed.

Keywords: Bayesian Networks, Anomaly Detection, Outlier Detection, Functional Dependencies,
Mixed Data

1. Introduction

When considering tabular data, anomalies (also refered as outliers in the literature) are often thought
as odd and isolated points within a multi-dimensional space. This has led many anomaly detection
algorithms to be designed using exclusively space-based approaches relying on distance and density
measures within neighborhoods of data points. It has been shown by (Lu et al., 2018) that the
detection of probabilistic dependencies violations using Bayesian Networks was complementary
to space-based approaches and could allow the detection of a broader range of anomalies when
combined. The idea of combining anomaly detection algorithms isn’t new and ensemble techniques
are already used as an attempt to join strengths and reduce bias of different algorithms (Aggarwal
and Sathe, 2017). In this respect, considering the core difference and complementarity between
distance-based and probabilistic-based detection algorithms, it seems both natural and essential to
combine these approaches.

Functional dependencies are not rare when dealing with tabular data. This kind of dependency
can be useful for detecting anomalies, but also problematic if we try to learn probabilistic depen-
dencies. Our objective is to interactively detect and correct anomalies by using both functional and
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probabilistic dependencies facing mixed data. Several approaches have been described for continu-
ous or categorical data, but none to our knowledge tries to tackle the case of mixed data.

In former studies, various scoring methods have been employed to identify anomalies : direct
likelihood ranking of individuals (Cansado and Soto, 2008), patterns recognition from manually
defined thresholds (Babbar and Chawla, 2012) and normalized likelihood-based scores (Kirk et al.,
2014; Rashidi et al., 2011). Manual threshold pattern recognition suffers from the need of defining
rules on what is anomalous and direct likelihood estimation is prone to detect ”rare” rather than
”incoherent” individuals. We thus decided to use a normalized likelihood-based score similar to
what Kirk et al. (2014) and Rashidi et al. (2011) mention, and often called Jensen score. We offer
a new usage of this score by defining a different exploration strategy built around an extended
definition of Markov blankets for a particular Bayesian Network construction. Our article also
distinguishes itself by presenting a way of integrating functional dependencies and adding value
through interactivity with an expert in the process of anomaly detection.

When used with Bayesian Networks, mixed data is generally subjected to a discretization step
for which several uni-modal or multi-modal algorithms exist (Boullé, 2006; Mabrouk et al., 2014;
Chen et al., 2017). Inspired by the work of Mabrouk et al. (2014), we’ve designed an new uni-modal
discretization process to be used for anomaly detection networks.

Motivated by the large presence of pairwise functional dependencies in today’s databases, we
mainly focused on the treatment of this type of dependence. For this aspect, we rely on the results
of Rahier (2018), who described a way of learning a Bayesian network when facing data including
functional dependencies, by first detecting these dependencies, and then by restricting a discrete
Bayesian network structure learning algorithm to a subset of functionally independent variables to
discover their probabilistic dependencies. Other publications focus on the discovery of functional
dependencies involving more variables (Caruccio et al., 2016).

Section 2.2 offers a general overview of our interactive anomaly detection system dealing with
mixed tabular data. Section 2.3 describes the way we decide to deal with mixed data by discretizing
continuous variables. Section 2.4 is dedicated to functional dependencies detection and their use
for identifying a first set of anomalies. Once functional dependencies have been processed, section
2.5 presents the hybrid Bayesian network we learn to capture the probabilistic dependencies with
original variables. In section 2.6, we give details about our anomaly detection approach based on
an adapted use of the Jensen score to detect anomalies in extended Markov blankets of our hybrid
Bayesian network. Section 2.7 briefly deal with the model update when the expert decides to correct
values in the data-set. Section 3 is dedicated to the empirical evaluation of our proposition. Section
4 concludes on the contribution of this paper and our perspectives.

2. Contribution

2.1 Notations

Let us introduce the notations used in the following sections. Our algorithm is dealing with n
random variables, with l discrete variables {X1,..., Xl} and n − l continuous ones {X̊l+1,..., X̊n}.
{Xl+1,..., Xn} will denote the discretized counterpart of these continuous variables.

x̊i will represent an instance of a continuous variable, when xi will represent its discretized
value, or the value of a discrete variable. V al(Xi) will denote the set of possible values for the
discrete variable Xi.
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Figure 1: Architecture of our interactive anomaly detection system dealing with mixed data.

X̊ = {X1,..., Xl, X̊l+1,..., X̊n} is the set of original variables, X = {X1,..., Xl, Xl+1,..., Xn} is
the set of the discrete and discretized variables, and X̊ = {X1,..., Xl, X̊l+1,..., X̊n, Xl+1,..., Xn} is
the original set of variables extended with the discretized ones.

D̊ and D respectively denote the original mixed data-set (over X̊) and the discretized one (over
X), and N is the number of instances in the data-set.

X̊|s, X|s, X̊|s will correspond to subsets of variables, with the corresponding datasets D̊|s, D|s.

2.2 Overview

Figure 1 presents the general overview of our interactive anomaly detection system dealing with
mixed tabular data.

As explained in introduction, and represented in the step 0 in Figure 1, we assume that distance-
based errors, which can’t be detected using probabilistic-based approaches, have been detected and
corrected as a pre-processing step. Removing non-informative variables prior to execution can also
speed up the process depending on the implementation.

Our proposition really starts with the discretization of the considered mixed data-set in step 1.
We proceed here to an unimodal discretization that will be described in section 2.3.

Once the data-set is discretized, we detect in step 2 functional dependencies which could exist
within the data-set. As part of this study we are only considering functional dependencies between
pairs of variables, as presented in section 2.4. At the end of this step, an outlier detection and correc-
tion can be performed based on functional dependencies only. Finally, one subset of ”functionally
independent” variables is selected.

In step 3, we then learn the structure of a Conditional Linear Gaussian Bayesian Network
(CLGBN) capturing all the probabilistic dependencies between the previously selected variables.
Section 2.5 gives more details about this step.

Step 4 is dedicated to the parameter learning of this Bayesian network, from the original dataset,
or its update when the dataset will be corrected in step 6 (section 2.7).
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The anomaly detection task (step 5) presented in section 2.6 uses probabilistic dependencies
previously discovered to score and rank potential anomalies and offer hints of correction.

Step 6 is the interactive part of the process, where some detected and ranked anomalies are pre-
sented to one expert in charge of validating or not the proposition in order to correct the anomalies.
Based on the expert’s correction choices, probability tables can be updated in step 4 and the process
can iterate until no more anomalies are validated by the expert.

2.3 Discretization

In the context of mixed data, discretization is in itself an important subject in Bayesian network
learning and more generally in Machine Learning. Using an arbitrary discretization by frequency
or by even intervals generally leads to sub-optimal networks. Even though this discretization arbi-
trariness can be reduced using multi-modal approaches (Boullé, 2006; Mabrouk et al., 2015; Chen
et al., 2017), these often come at a considerable computing cost.

For this reason, in this first version of our anomaly detection system, we use a simple uni-modal
discretization approach based on the Expectation-Maximization algorithm (Dempster et al., 1977;
McLachlan and Krishnan, 2008). For each continuous variable X̊i ∈ {X̊l+1,..., X̊n} we learn a
mixture of Gi ≥ 2 Gaussians and discretize them by assigning the label of the most explaining
Gaussian to entry i of every instances x.

In order to prevent over-fitting, the number of Gaussians Gi for each mixture is determined by
applying an usual stepwise greedy search to optimize the BIC criterion, but some other criteria can
be used (Celeux et al., 2018).

The parameters of the Gaussian distributions have been initialized by using a classical grid
initialization between the bounds of the considered variable for the mean and a constant standard
deviation.

2.4 Functional Dependencies

A functional dependency between one variable Xi and a set of variables W is usually defined by
the fact that for every valid instance of W , that instance of W uniquely determines the value of
Xi. This can be seen as a special case of probabilistic dependency and be detected if the conditional
entropy H(Xi|W ) = 0.

Presence of functional dependencies are known to render conditional independence tests be-
tween variables unreliable, and thus would lead to unfaithful graph structures when learning our
Bayesian network in the next step (Luo, 2006; Rodrigues de Morais et al., 2008; Mabrouk et al.,
2014; Rahier, 2018). For this reason, we offer to detect in this step functional dependencies and
correct found functional violations.

Being interested in detecting functional dependencies in the context of anomaly detection,
we need to expand our definition of functional dependencies to what is often defined as ”quasi-
determinism” or ”relaxed functional dependencies”, so that potential errors don’t prevent their de-
tection. Relaxed functional dependencies are functional dependencies that almost hold except on a
”small” subset of entries. Several algorithms have been published for relaxed dependencies mining
(Caruccio et al., 2016; Bleifuß et al., 2016; Caruccio et al., 2019).

In our architecture, we propose to use the results of Rahier (2018) which offer a simple approach
to detect and cluster pairwise quasi-deterministic dependencies between discrete variables by rely-
ing on conditional entropy computations. The algorithm essentially considers each pair of variables
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(Xi, Xj) and check if the conditional entropy is inferior to a given ε. In short, if H(Xi|Xj) < ε,
Xj is a ”functional” parent candidate for Xi.

Rahier (2018) finally structures the functional dependencies discovered as a spanning forest
F where each Xi has at most one ”functional” parent PaF (Xi). Variables without ”functional”
parents are called roots, and are functionally independent. We will denote later R this set of roots,
X|R the subset of functionally independent discrete variables and X̊|R the corresponding subset in
the original variables.

After their detection, we learn the CPD P (Xi|PaF (Xi)) of each functional dependency present
inF and we create a Boolean function fi that allows the identification of values (xi, xj) of (Xi, PaF (Xi))
that violate the quasi-deterministic functional dependency discovered.

fi(Xi = xi, PaF (Xi) = xk) = 1− δxi,xk
i

(1)

where
xki = argmax

xi∈V al(Xi)
P (Xi = xi|Pa|F (Xi) = xk) (2)

For each instance in D we then check the values of fi functions, whenever a fi returns true we
report the error to the user along with the involved variables (Xi = xi, PaF (Xi) = xk) and ask for
a correction of this anomaly.

2.5 CLGBN structure Learning

The objective of this section is to learn a Conditional Linear Gaussian Bayesian Network (CLGBN,
Lauritzen and Wermuth 1989) that captures the probabilistic dependencies between variables X̊|R,
i.e. once the functional dependencies have been processed in section 2.4. Restricting ourselves to
this subset of variables ensures the absence of functional dependencies and allows to maintain the
same amount of information while reducing the number of variables.

Rather than learning directly this CLGBN from the mixed data, we present a two-step alternative
process inspired from the work of Mabrouk et al. (2014) and relying on the Gaussian mixtures
found during discretization step (section 2.3). First, a simple discrete Bayesian Network structure
is learned on X|R, the discretized version of the variables This structure learning step is generic and
can be made using any preferred algorithm.

Second step consists in creating the final CLGBN over variables X̊|R by augmenting the dis-
crete Bayesian Network learned over X|R with the continuous variables present in X̊|R and adding
a conditional probabilistic dependency P (X̊i|Xi) for each of these continuous variables. These
conditional distribution will be defined with the Gaussian mixtures learned in section 2.3.

The obtained CLGBN contains both the probabilistic dependencies between the continuous
variables and their discrete counterparts, and the probabilistic dependencies discovered between all
the discrete or discretized variables.

2.6 Anomaly Detection and Correction

Anomaly detection using Bayesian Network whether on continuous/discrete data or temporal series
has been subject of several publications (Kirk et al., 2014; Das and Schneider, 2007; Rashidi et al.,
2011; Babbar and Chawla, 2012). Some approaches have been based solely on reporting individuals
with lowest likelihoods of occurrence, others on defining manually patterns rules to identify anoma-
lous individuals (Babbar and Chawla, 2012). Our detection approach distinguishes itself both from
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the use of the CLGBN learned in the previous section and from the application of an anomalousness
scoring that considers Markov Blanket of variables.

2.6.1 MARKOV BLANKET BASED SCORING OF ANOMALOUSNESS

As part of this architecture, we use a scoring method defined in eqn 3 relying on a normalized
likelihood score called the Jensen score (Jensen and Nielsen, 2007; Kirk et al., 2014; Rashidi et al.,
2011).

J(x1, x2, ..., xn) = log(
P (x1)P (x2)...P (xn)

P (x1, x2, ..., xn)
) (3)

The intuition behind the use of this score is the following. Given a conjunction of variables and
their values, if the probability of occurrence of this conjunction is inferior to the product of their
marginal probabilities of occurrence, we can flag the conjunction as incoherent and should report
it as abnormal to the user. In other words, a conjunction of values must have a Jensen score below
zero to be considered coherent.

In a Bayesian network defined over a set of variables X, the Markov Blanket of one node Xi

is by definition the set of variables MB(Xi) given which Xi becomes conditionally independent
from X \MB(Xi). It means that when the values of X are all observed, the values of MB(Xi)
are the only ones that are necessary to estimate the posterior probability of Xi. A side effect is that
we can estimate J(Xi,MB(Xi)) to determine if there is a probabilistic anomaly between the value
observed for Xi and the observation of its Markov blanket.

In our CLGBN, the discretized variables present in X̊|R are unobserved. So, we propose to
modify this Markov blanket by replacing the discretized (and unobserved) nodes {Xj} present in
{MB(Xi) ∪ Xi} by their continuous counterpart {X̊j} in order to obtain an extended Markov
blanket eMB(Xi).

In this definition, we are considering each information given by the observation of continuous
variable X̊j = x̊j as a soft evidence P (Xj |̊xj) sufficient to determine the posterior distribution of
its discretized variable Xj , whatever the values of other variables dependent with Xj (as defined
by Valtorta et al. (2002), by opposition to the virtual evidence defined by Pearl (1988). The use of
this soft evidence is also a way to reduce the arbitrariness of the previous discretization step by not
using directly the discretized value as an evidence.

By this way, this extended Markov blanket eMB(Xi) contains all the necessary information to
estimate the posterior distribution of Xi.

With this reasoning, we propose to compute J(eMB(Xi) = embi) to determine if there is a
probabilistic anomaly between the value observed forXi and the observation of its extended Markov
blanket, where embi is the observation of eMB(Xi).

2.6.2 DETECTION, RANKING AND CORRECTION PROPOSAL

For each variable Xi in the original mixed variable set (restricted to the functionally independent
variables) X̊|R the scoring of anomalousness J(eMB(Xi) = embi) for a observed configuration
embi is computed for all the N instances of the dataset and normalized (cf. eqn 4).

j(eMB(Xi) = embi) =
J(eMB(Xi) = embi)− E[J(eMB(Xi))]

std(J(eMB(Xi)))
(4)
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As explained in section 2.6.1, only the instances mbi with a positive value of the Jensen score
J(eMB(Xi) = mbi) > 0 are considered and detected as anomalies. In order to rank these anoma-
lies even if they are raised by different eMB(Xi), we propose to rank them with respect to their
normalized scoring function j(eMB(Xi) = embi).

One anomaly can be detected in several eMB(Xi), but the more important is that one of them
is proposed to the expert in order to correct it.

This potential anomaly is then proposed to the expert as a set of variables and their observed
values eMB(Xi) = embi. The expert is then in charge of looking at all these variables and val-
ues and checking what pair of variable and value (Xj , xj) could be the anomaly (where Xj be-
longs to eMBi). We decide here to help the expert by proposing him the posterior distribution
P (Xj | {embi \ xj}) of each Xj candidate (or its discretized counterpart) without its potential ab-
normal value xi.

2.7 Model updating

With the list of information proposed to him in the previous section, the expert can decide to correct
one variable Xj with a new value x∗j instead of the previous value xj . We then proceed with the
change of our CLBGN parameters that are dependent with this variable by updating the sufficient
statistics classically used and stored during the parameter estimation phase. We make here the
assumption, that such a small change in the dataset (and the repetition of these small changes caused
by anomaly correction) will not change the underlying structure of our model.

3. Experiments

3.1 Datasets and implementation

For these experiments, we used the NFL2016 dataset1 previously pre-processed which contains here
about 2330 NFL players entries. Information includes both continuous variables (Jersey number,
Age, Height, Weight, ...) and discrete ones (Position, Position-Group, Side, ...).

We know that three functional dependencies are present in this data-set (Position → Position-
Group, Years→ Level and Position-Group→ Side).

Even if we don’t know exactly what entries in this data-set have anomalies, we have selected
this data-set because of the existence of several external sources about NFL players that allows us
to fact-check all the possible anomalies detected.

We are currently working with several other data-sets, but fact-checking takes a long time, so
we decided to provide here only results for this NFL data-set. As we don’t know exactly where are
all the possible anomalies in this data-set, the only performance measurements we can use are True
and False Positive (TP, FP), after our fact-checking step.

The implementation of our architecture has been performed with our C++ library dedicated to
Probabilistic Graphical Models, PILGRIM2, with the help of ProBT3 library for handling CLGBNs.

The BN structure learning used during step 3 is our implementation of the classical Greedy
search algorithm initially proposed by Chickering et al. (1995), or an exact search with BIC scoring

1. https://data.world/tarek-benkhelif/nflplayers
2. http://pilgrim.univ-nantes.fr/
3. https://www.probayes.com/
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Figure 2: Distribution of detection and real anomalies detected among the variables

function. The threshold used for the detection of quasi-deterministic functional dependencies is
ε = 0.02.

3.2 Experimental design and results

3.2.1 PROBABILISTIC DETECTION OF ANOMALIES

In this experiment, we’ve decided to run our system without Step 2 (related to functional dependen-
cies) in order to detect, rank and propose anomalies only with the help of our CLGBN.

Among the 2330 instances (NFL players), 364 anomalies have been detected (with some anoma-
lies related to the same player) and reported to the expert. After fact-checking the information re-
lated to each anomaly detected, 131 detections are real anomalies, 20 detections are unsure ones,
140 are false detection, and 73 are considered as ”surprising” instances, i.e. unusual values, but
corresponding to the reality. In Figure 2, we can also see that we are able to detect real anomalies
from both discrete (Position) and continuous (Jersey and Weight) variables.

Even if we know that this dataset includes some functional dependencies, we were able in this
first experiment to illustrate the interest of the use of our CLGBN in order to detect anomalies in
discrete or continuous framework.

3.2.2 INTEREST OF THE EXTENDED JENSEN SCORE

This second experiment is the same as the previous one but with a specific focus on the Jensen score
values. The anomalies detected by our Jensen scores are filtered with respect to a given threshold.

Figure 3 shows us the evolution of True and False positive anomaly detection when focusing
on the extended Markov blanket of Jersey variable. We can see that our scoring function is helpful
for ranking anomalies. By increasing the detection threshold, only a fraction of the previous real
anomalies (TPmax) are detected but the quality of the detection (ratio TP/(TP +FP )) increases.

Figure 4 presents the distribution of the (un-normalized) Jensen score computed on the extended
Markov blanket for two variables Height and Weight, for real and false detections. Confirming the
previous results, this Jensen score helps to detect real anomalies (the higher this score is, the more
True positives we have). But, by comparing distributions between both variables, we can see that
our score distributions are not comparable between two different extended Markov blankets. This
observation confirms the interest of using the normalized version described in eq. 4.
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Figure 3: Evolution of detection performances related to Jersey variable when Jensen scores are
filtered with respect to a given threshold.

Figure 4: Comparison of (un-normalized) Scores J(eMB) distribution for variables Height and
Weigth for real (TP) and false detections

3.2.3 FUNCTIONAL AND PROBABILISTIC DETECTION

In this third experiment, we run once again our anomaly detection system, by also taking into
account functional dependency detection.

As a first result, the three expected functional dependencies are detected in our dataset : Po-
sition → Position-Group → Side and Years → Level. No anomalies were detected during this
phase, which is coherent with the results of our previous experiments where the 131 real anomalies
discovered were not involving variables present in the existing functional dependencies.

The CLGBN obtained during step 3 is described in Figure 5 with or without taking into account
the functional dependency detection. We can notice that both structures capture similar probabilistic
dependencies, except the one between Level and Jersey. As partially observed in figure 2, some
anomalies have been detected with the first CLGBN regarding Level Markov blanket. All these
anomalies where False Positive. Our new CLGBN doesn’t contain this dependency and those False
Positive are no longer detected.

Without any filtering or action from the user, by using only our scoring function, 920 anomalies
would be detected, which is about 3 times the number of detection made in the previous experiment.

We identified that 126 of the 131 FP were rightly identified, 14 of the 20 unsure and 192 of
the previous 213 FP. But more than 480 detections have been made scoring the eMB(Height),
whereas our first experiment only detected about 40 potential anomalies for it. This surprising result
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Figure 5: CLGBN obtained during step 3, without taking into account functional dependencies
(left) and by taking into account the functional dependencies (right). The dotted depen-
dencies added in the right figure correspond to the functional dependencies

is explained by the use of the Greedy Search structure learning algorithm and the disappearance of
Weight in the extended Markov Blanket of Height. In the second model, Height and Weight are
only conditionally independent to Position. This loss of dependency between Height and Weight
generates an increase of false positives, and enforced us in our decision of using an exact structure
learning algorithm when the number of variables is low. The results of this experiment are not shown
due to lack of space, but the CLGBN learnt here contains the direct dependency between Weight
and Height, and the anomalies detected are similar to the one detected without taking functional
dependencies into account.

4. Conclusion

We proposed in this paper an architecture dedicated to interactive anomaly detection system dealing
with mixed tabular data, and taking into account both functional dependencies and probabilistic ones
for anomaly detection. As functional dependencies are known to perturb Bayesian network struc-
ture learning algorithms, we first detect an correct them independently. We deal with mixed data
by discretizing continuous variables. We then detect functional dependencies prior to BN structure
learning, considering only discrete and discretized variables. We soften the effect of discretization
boundaries for the anomaly detection phase by extending the learned BN with direct dependencies
between discretized variables and their continuous counterparts. This Continuous Linear Gaussian
BN is finally used for detecting probabilistic anomalies. For this task, we adapted existing Jensen
score to focus on specific subsets of variables, taking into account Markov blankets both for detec-
tion and correction hints.

In our first experiments with NFL dataset, we were able to show that even the probabilistic part
of our architecture is able to detect real anomalies in a dataset. The same experiments confirmed the
interest of our extended Jensen score, and its normalized version. Another experiment highlighted
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the importance of functional dependencies, and the fact we have to resort to an improved Bayesian
Network structure learning algorithm or an exact one when the number of variables is low, to ensure
the quality of the Markov blanket.

This work is the first step of the development of our architecture, with several perspectives. In a
very short term, we intend to perform larger experiments with other datasets in order to consolidate
the interest of our proposition.

We are also planning to work on improvements of our discretization process, for instance with a
multivariate process intertwined with the BN learning (Mabrouk et al., 2015) or by using mixtures of
truncated Gaussians (Gonzales, 2019) instead of Gaussians in order to avoid spurious discretization
effects.

Detecting more complex functional dependencies could also be interesting, even though we
know we will face complexity issues.

Finally, this architecture can also be improved by working on the interaction with the expert,
improving his guidance and better using his feedback to score anomalies.
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