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Abstract
Probabilistic circuits (PCs) represent a probability distribution as a computational graph. Enforcing
structural properties on these graphs guarantees that several inference scenarios become tractable.
Among these properties, structured decomposability is a particularly appealing one: it enables the
efficient and exact computations of the probability of complex logical formulas, and can be used
to reason about the expected output of certain predictive models under missing data. This paper
proposes Strudel, a simple, fast and accurate learning algorithm for structured-decomposable PCs.
Compared to prior work for learning structured-decomposable PCs, Strudel delivers more accurate
single PC models in fewer iterations, and dramatically scales learning when building ensembles of
PCs. It achieves this scalability by exploiting another structural property of PCs, called determinism,
and by sharing the same computational graph acrossmixture components. We show these advantages
on standard density estimation benchmarks and challenging inference scenarios.

Keywords: Probabilistic circuits; structure learning; structured decomposability.

1. Introduction

In several real-world scenarios, decision making requires advanced probabilistic reasoning, i.e.,
the ability to answer complex probabilistic queries (Vergari et al., 2020). Consider, for instance,
querying a generative model for the probability of events described as logical constraints (Bekker
et al., 2015), e.g., rankings of user preferences (Choi et al., 2015; Shen et al., 2017); or the probability
of Bayesian classifiers agreeing on their prediction (Choi andVan denBroeck, 2018); or to conform to
human expectations (Khosravi et al., 2019b,a). Answering these queries goes beyond the capabilities
of intractable probabilistic models like classical Bayesian networks (BNs) and more recent neural
estimators such as variational autoencoders and normalizing flows (Papamakarios et al., 2019).

Moreover, in many sensitive domains like healthcare and finance, the result of these queries
is required (i) to be exact, as approximations without guarantees would make the decision making
process brittle, and (ii) to be provided in a limited amount of time. This explains the recently growing
interest around tractable probabilistic models (TPMs) which guarantee both (i) and (ii) by design.

Probabilistic circuits (PCs) (Choi et al., 2020; Vergari et al., 2020) propose a unifying frame-
work to abstract from the myriad of different TPM representations. Among these, arithmetic cir-
cuits (Darwiche, 2003), probabilistic sentential decision diagrams (Kisa et al., 2014), sum-product
networks (Poon and Domingos, 2011), and cutset networks (Rahman et al., 2014) naturally fit under
the umbrella of PCs. Classical bounded-treewidth graphical models (Koller and Friedman, 2009)
and their mixtures (Meilă and Jordan, 2000) are easily cast into a PC. Within the framework of PCs,
one can reason about the tractable inference capabilities of a model via the structural properties

1



Dang & Vergari & Van den Broeck

of its computational graph. In turn, this enables learning routines that, by enforcing such specific
structural properties, deliver PCs guaranteeing tractable inference for the desired classes of queries.

The structured decomposability (Kisa et al., 2014) property of PCs enables the largest class of
tractable inference scenarios. Indeed, all the advanced probabilistic queries we mentioned in the
introductory paragraph can be exactly and efficiently answered using structured-decomposable PCs.
In a nutshell, a structured-decomposable PC encodes a probability distribution in a computational
graph by recursively decomposing it into smaller distributions according to a hierarchical partitioning
of the random variables, also called vtree. However, while inference on structured-decomposable
PCs has been extensively studied (Bekker et al., 2015; Choi et al., 2015; Shen et al., 2016; Liang and
Van den Broeck, 2017), relatively little attention has gone to learning these circuits from data. The
only learning algorithm fully tailored towards structured-decomposable PCs is LearnPsdd (Liang
et al., 2017). LearnPsdd had the merit of introducing the task of learning a vtree. However, this
vtree learning step is detached from the actual PC structure learning step as local search, which
starts from a fully-factorized circuit that ignores the discovered dependencies in the previous step.
Furthermore, LearnPsdd performs a costly local search: it evaluates many candidate PC structures
and computes for each of them their penalized likelihood scores, which makes it hard to scale to
larger real-world datasets.

In this paper we introduce Strudel, a simpler and faster way to learn structured-decomposable
PCs. Specifically, Strudel drastically simplifies the search by not computing a likelihood score
for each candidate structure but greedily growing the circuit. Moreover, we do not perform vtree
learning and instead initialize the PC structure in Strudel using the best TPM that can be learned
with guarantees. It considerably speeds up learning while still delivering accurate PCs. This is
even more relevant when learning large mixtures of PCs; here we propose to scale even further
by mixing components that share the same structure. We demonstrate these performance gains on
20 standard benchmarks and on the more challenging task of computing the expected predictions
of regression models in the context of missing data (Khosravi et al., 2019a). The rest of paper is
organized as follows. Sections 2 and 3 introduce the framework of PCs for tractable probabilistic
inference. Sections 4 and 5 describe Strudel for learning single PCs and mixtures thereof. Lastly,
Section 6 discusses our experimental results.

2. Probabilistic Circuits

Recently, the great interest in tractable probabilistic modeling propelled the introduction of a mul-
titude of representations. Many of these representations can be understood under a unifying com-
putational framework, which we refer to as probabilistic circuits (PCs) (Choi et al., 2020; Vergari
et al., 2020). PCs reconcile and abstract from the different graphical and syntactic representations of
recently introduced formalisms such as arithmetic circuits (Darwiche, 2003), probabilistic sentential
decision diagrams (PSDDs) (Kisa et al., 2014), sum-product networks (SPNs) (Poon and Domingos,
2011), cutset networks (Rahman et al., 2014), and bounded-treewidth graphical models (Koller and
Friedman, 2009; Meilă and Jordan, 2000). Moreover, PCs enable reasoning about the tractable
inference scenarios they support in terms of a unified set of structural properties.

Notation. We use upper-case letters for random variables (RVs), e.g., X,Y , and lowercase ones
for their assignments e.g., x, y. Analogously, sets of RVs are denoted by upper-case bold letters,
e.g., X, Y, and their joint values by the corresponding lower-case ones, e.g., x, y. Here we consider
discrete RVs, specifically represented as Boolean variables, i.e., having values in {0, 1}.
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Figure 1: A structural decomposable PC and its corresponding vtree and equivalent BN. The CLT
over RVs X = {X1, X2, X3, X4} in (1b) with CPTs in (1a) is turned into the structured-decomposable
PC in (1d) whose extracted vtree is shown in (1c). In red, all the edges that are “active” in the circuit
flow for the input configuration {X1 = 1, X2 = 0, X3 = 1, X4 = 0}. Root node is on the right.

Representation. A probabilistic circuit C over RVs X is a directed acyclic graph (DAG)
representing a computational graph that encodes a probability distribution pC(X) in a recursive
manner. This DAG has three kinds of nodes: input distributions (leaves), product nodes and sum
nodes. Figure 1d shows an example of a PC. Each node n encodes a distribution pn, defined
as follows. Let Cn denote the sub-circuit rooted at node n and ch(n) its child nodes. An input
distribution n encodes a tractable probability distribution pn over some RVs φ(n) ⊆ X, also called
its scope. A product node n defines the factorized distribution pn(X) =

∏
c∈ch(n) pc(X). W.l.o.g.

we will consider product nodes to have only two children. A sum node n defines a mixture model
pn(X) =

∑
c∈ch(n) θn,cpc(X) parameterized by edge weights θn,c. The scope of a product or sum

node is the union of the scopes of its children: φ(n) = ∪c∈ch(n)φ(c). In this work targeting Boolean
RVs, we consider univariate input distributions, specifically leafs for RV Xi ∈ X will be indicator
functions of the form p(Xi = 1) = ~Xi = 1�. Let θ denote all the parameters in a circuit C (only
attached to sum node edges, since input distributions are indicators).

Even if they are probabilistic models expressed via a graphical formalism, probabilistic circuits
are not classical PGMs. The clear operational semantics we described above makes PCs peculiar
neural networks (Vergari et al., 2019; Peharz et al., 2020)whose inner units are either products (acting
as non-linearities) or convex combinations of their inputs. Overall, a PC C defines a multilinear
polynomial (Darwiche, 2003) whose indeterminates are the distributions equipping the leaves of C.

Inference. Any PC C over RVs X that represents a normalized distribution supports computing
the likelihood pC(x) given a complete configuration x (a complete evidence query) by evaluating
the circuit bottom up: starting from the input distributions and computing the output of children
before parents. Additional structural properties of the PC, such as decomposability, smoothness and
determinism, can extend the set of probabilistic queries that are guaranteed to be answered exactly
and in time linear in the size of the PC, that is, its number of edges. Then, query answering reduces
to traversing the PC bottom-up (forward) and top-down (backward) given values for the leaf nodes.

A PC is decomposable if for every product node, the children have disjoint scopes. That is,
product nodes encode well-defined factorized probability distributions. A PC is smooth if for every
sum node, the children have the same scope. That is, sum nodes encode mixtures of distributions
that are well-defined over identical sets of RVs. Smooth and decomposable PCs enable the tractable
computation of any marginal query (Darwiche, 2003). SPNs (Poon and Domingos, 2011) are
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examples of smooth and decomposable PCs. A circuits is deterministic if for every sum node n and
assignment x, at most one of the children of n have a non-zero output. That is, a deterministic sum
defines a mixture model whose components have disjoint support, enabling tractable MAP queries
(Chan and Darwiche, 2006). Examples of smooth, decomposable and deterministic PCs are cutset
networks (Rahman et al., 2014; Di Mauro et al., 2015b) and selective SPNs (Peharz et al., 2014).

Structured-Decomposable PCs. More recently, the stronger property of structured decompos-
ability has been introduced to enable a larger class of tractable inference scenarios (Pipatsrisawat and
Darwiche, 2008; Kisa et al., 2014). Briefly, the product nodes in a structured-decomposable PC can-
not decompose in arbitrary ways, but must agree on a “contract.” A PC is structured-decomposable
if it is normalized for a vtree, a binary tree encoding a hierarchical decomposition of RVs. Each
leaf in a vtree denotes a RV, while an internal node indicates how to decompose a set of RVs in two
subsets mapping to its left and right branch. A PC is normalized for a vtree if the scope of every
product node decomposes over its children as its corresponding node in the vtree. An example of a
vtree and a structured-decomposable PC normalized for it are shown in Figure 1c and Figure 1d.

By enforcing structured decomposability, several classes of advanced probabilistic queries be-
come computable exactly and efficiently. For instance, structured-decomposable PCs allow to
compute symmetric and group queries (Bekker et al., 2015) and, given certain constrained vtrees,
same-decision probabilities (Oztok and Darwiche, 2015), their expected version (Choi et al., 2017)
and classifier agreement (Choi and Van den Broeck, 2018). Moreover, if two PCs conform to the
same vtree, it is possible to efficiently compute the KL divergence between them (Liang and Van den
Broeck, 2017); to multiply them (Shen et al., 2016); or to take the expectation of one according
to the distribution encoded by the other (Choi et al., 2015; Khosravi et al., 2019a). AND-OR
graphs (Dechter and Mateescu, 2007) and PSDDs (Kisa et al., 2014) are examples of smooth, de-
terministic and structured-decomposable PCs.1 Despite all these advanced inference scenarios that
structured-decomposable PCs enable, relatively little attention has been dedicated to learning these
circuits from data, and the only attempt so far is difficult to scale (Liang et al., 2017).

3. Circuit Flows: Fast Inference and Parameter Learning

Before explaining Strudel, we briefly introduce circuit flows – a computational tool that allows
us to scale up our learner. Determinism not only makes MAP inference tractable, but also enables
closed-form parameter estimation in PCs (Kisa et al., 2014) and dramatically speeds up inference
by leveraging circuit flows. We refer to Liang and Van den Broeck (2019) for a formal definition.
Figure 1d shows an example of a circuit flow. Intuitively, a circuit flow in a deterministic PC C
encodes which parameters are activated by different input configurations.

Fast inference. For a given sample x, a flow acts as a transformation fC : X 7→ {0, 1} |θ | mapping
x to a binary encoding, called flow embedding, with as many entries as there are parameters in C.
The k-th entry in fC(x) is 1 if sample x flows through the edge associated with the k-th parameter
in θ, reaching the output, and 0 otherwise. As such, the log-likelihood LLC(θ; x) of a deterministic
circuit C parameterized by θ, given a single input configuration x, is efficiently computed as

LLC(θ; x) = log(pC(x)) = fC(x)T · log(θ).

1. In their original formulation (Kisa et al., 2014), PSDDs required a stronger notion of determinism, which has no
practical implication for tractable probabilistic inference.
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Similarly, the circuit flow of a batch of samples D can be represented as a binary matrix FC(D) ∈
{0, 1} |D |×|θ |. Then, the log-likelihood given the entire batch at once is efficiently vectorized as

LLC(θ;D) = FC(D) · log(θ).

This formulation of the likelihood has the clear benefit that a vectorized computation can yield
significant speedups. Furthermore, thematrixFC(D) can be computed by propagating bit-vectors up
and down the circuit C. Recall that flow embeddings are binary vectors by virtue of the determinism
property. Bit-vector arithmetic is extremely efficient, much more so than using floating-point
vectors to compute the same likelihoods. Lastly, circuit flows will greatly benefit inference in our
large ensembles sharing the same structure (cf. Section 5). Since a flow only depends on the circuit
structure, for a mixtureM = {Ci}ki=1 of k PCs sharing the same structure, we need to evaluate a
single flow fM once. As such, the log-likelihood ofM given x can be efficiently computed as:

LLM(Θ; x) = logsumexp( fM(x)T · log(Θ) + log(w)), (1)

where w = {wi}ki=1 are the mixture weights, and Θ is the matrix whose columns are the parameters
θi of the ith PC in the mixture. We empirically show these speedups in Section 6 and Appendix C.

Parameter learning. More instrumental to our purpose, flow embeddings can be used for
parameter learning of a PC C. We define the aggregate flow aC(i, j;D) of one edge ei, j associated
with the kth weight θi, j , as the total number of configurations in the datasetD that flow through edge
ei, j , and whose likelihood therefore contains the kth weight θi, j as a factor. That is, aC(i, j;D) =∑ |D |

h=1FC(D)[h, k]. Now, the maximum likelihood estimator (MLE) of weight θi, j can be computed
in closed form as the ratio

θMLE
i, j =

aC(i, j;D)∑
∗aC(i, ∗;D)

. (2)

In other words, θMLE
i, j can be computed as the ratio of the number of samples in D flowing through

edge ei, j over the total number of samples flowing through node i.
In summary, the circuit flow formulation has the benefit of (1) vectorizing the computation,

(2) allowing for a single computation of the flow embeddings to be reused across PCs with the
same structure but different parameters, for example in large ensembles, and (3) yielding simple
closed-form parameter estimates. Moreover, we will show in Section 4 that flows can act as one
of the building blocks in structure learning. Thus, both our learner for expressive single models in
Section 4 and for scalable ensembles in Section 5 will make use of this efficient formulation.

4. Strudel: Learning Structured-Decomposable Probabilistic Circuits

The objective of structure learning for PCs is to find a circuit structure and parameters that approx-
imate well the data distribution. If the learned PC has to guarantee tractable inference for certain
classes of queries, its structure has to enforce the corresponding properties discussed in Section 2.
For the advanced inference scenarios we are interested in, and to retain efficient parameter learning
(cf. Section 3), we require structured decomposability and determinism. So far, the only alternative
learner to deliver such PCs is LearnPsdd (Liang et al., 2017), which however performs a search
procedure that can be computationally inefficient. We review LearnPsdd next, before proposing
Strudel and explaining how it addresses some deficiencies of the prior work.

LearnPsdd and its limitations. LearnPsdd performs a local search over the space of possible
structured-decomposable PCs, given a vtree as input. To learn a vtree from data, a hierarchical
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clustering step is performed over the RVs discovering some independence relationships: they are
recursively grouped bottom up (or split top down) so as to maximize their pairwise mutual informa-
tion. Next, local search starts from a fully-factorized PC, that is, one where all RVs are considered
to be independent, reshaped to conform to the learned vtree. Each search iteration locally changes
the circuit while preserving its semantics and structural properties of smoothness, determinism and
structured decomposability. To propose candidates, LearnPsdd consistently applies two structural
transformations – split and clone – to all possible nodes in the circuits. These candidates are then
ranked by their log-likelihood score, penalized by their circuit size.

We highlight the following shortcomings of LearnPsdd: (i) vtree learning as a separate pre-
processing step has a limited effect on structure learning, which starts from a fully-factorized
distribution, discarding the dependencies discovered in vtree learning. Moreover, while circuit flows
speed up likelihood computation in deterministic circuits, (ii) using likelihood to score candidate
structures drastically slows down learning, especially in large data regimes. As a result, when
employed in mixture models LearnPsdd has not been able to scale beyond tens of components.

To overcome these shortcomings, we propose to: (i) extract a vtree structure from the best graph-
ical model that can be learned in tractable time, and then compile it into a structured-decomposable
PC, which provides a more informative starting point, (ii) dramatically reduce learning time by
employing a greedier local search employing a single transformation, split, and (iii) effectively use
circuit flows to speed up parameter learning and likelihood computation. The resulting algorithm
is a simpler, faster structure learning scheme, yet yielding competitively accurate PCs and enabling
fast learning of large mixtures. We name it Strudel: a STRUctured-DEcomposable Learner.

4.1 From Chow-Liu Trees to Structured-Decomposable PCs

Instead of coming up with a fixed vtree and distilling an initial PC structure out of it, we propose to
do the inverse: learn the best initial PC from data, and distill a vtree from it.

Chow-Liu trees. Here we useChow-Liu trees (CLTs) as the “best” initial PC structure. CLTs are
tree-shaped BNs that satisfy our desiderata: they guarantee to encode the best tree model in terms
of KL divergence with the data distribution; they support linear time marginals and MAP inference;
and can be learned in time O(|X|2 |D|). Furthermore, as we will show next, we can quickly compile
CLTs into smooth, deterministic and structured-decomposable PCs and extract a vtree from them.

More formally, a CLTT over RVsX is a tree-shaped BN equippedwith parameters θi |Pai defining
the conditional probability table (CPT) of node i associated to RV Xi with parent node Pai. An
example of a CLT is shown in Figure 1b. The classic Chow-Liu (1968) algorithm learns a CLT T
from data D by running a maximum spanning tree algorithm over a complete graph induced by
the pairwise mutual information (MI) matrix over variables X as estimated from data D. These
MI estimates are used to compute the θi |Pai parameters, and can be smoothed by adding a Laplace
correction factor α. See Appendix A for a detailed algorithm. Computation-wise, the cost of
learning a CLT is the same as learning a vtree in LearnPsdd, i.e., that of computing the pairwise
MI. Learning-wise, we are not discarding this information but embed it in the initial PC structure.

CompilingCLTs. Wenow turn our attention to compiling a CLT into a structured-decomposable
PC. Compiling generic BNs into smooth, deterministic and decomposable PCs,2 has been extensively
researched in the literature (Darwiche, 2003), and compilation of a BN into a structure decomposable
circuit has also been explored (Choi et al., 2013; Shen et al., 2016). However, compiling a BN (even

2. Specifically to Arithmetic Circuits (Darwiche, 2003) represented as DAGs having parameters attached to leaf nodes.
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a CLT) for an arbitrary vtree can lead to an exponentially larger PC. Therefore, we adopt a simple
strategy tailored for CLTs that extracts a vtree guaranteeing a linear-size PC in the number of RVs.

We start from the observation that a rootedCLTprovides a natural variable decomposition. While
rooting the CLT can be done arbitrarily, we root it at its Jordan center as a heuristics to minimize the
resulting vtree depth and thus yielding smaller PCs. Then we traverse the CLT top-down to build the
vtree, for each node Xi ∈ T, if Xi is a leaf node, compile it to a vtree leaf node vi containing variable
Xi; otherwise build an inner node with vi as its one branch, and the vtree for its children ch(Xi) as
its other branch. After a vtree is fully grown, we proceed compiling the CLT bottom-up, caching the
previously compiled sub-circuits, which guarantees that we obtain a PC of linear size (Darwiche,
2003). For every node Xi ∈ T that we visit, and for every parent configuration, we introduce sum
nodes selecting a value of Xi with edge weights p(Xi |XPai = xPai ), i.e., its distribution conditioned on
the parent configuration. A corresponding indicator leaf, following the vtree structure, is introduced
in the product. This yields a smooth deterministic sum node branching over the possible values for
the considered RV. Figure 1d illustrates the compiled PC for the example CLT in Figure 1b.

4.2 How And What to Split

From this initial circuit, Strudel applies the split operation at each step, performing a greedy search.
It waives the necessity for computing the penalized log-likelihoods of possible candidate structures.

Our split operation is based on the one proposed in Liang et al. (2017), which builds on Lowd
and Domingos (2008). Given a PC structure Ct at iteration t, we create Ct+1 in a two-step procedure.
First, we select one edge en,c to split, from one sum node n to one of its child product nodes c, and one
variable Xi to split in the scope of c. Second, we make two partial copies of sub-circuits rooted at c
conditioned on ~Xi = 0� and ~Xi = 1� respectively. These partial copies are carried out by copying
nodes up to a certain depth bound. We thus create Ct+1 by removing child c from node n in Ct , while
adding both of the new copies. This splitting operation preserves smoothness and determinism since
sums are conditioned on the RV Xi, while copying preserves structured decomposability.

Selecting edges to split. To select an edge and variable to split, the simplest but uninformed
strategy would be to pick one edge and one variable randomly. We name these two strategies eRAND
and vRAND. Clearly, a more informed heuristics, but less expensive than the computation of the
likelihood, would benefit search. We introduce two novel heuristics, eFLOW and vMI for selecting
an edge and a variable respectively. Specifically, eFLOW selects edge ei, j which maximizes the
aggregate circuit flow (cf. Section 3):

scoreeFLOW(ei, j ;Ct,D) := aCt (i, j;D) (3)

That is, the eFLOW picks the edges where more samples in D flow through, indicating that
introducing a new sub-circuit there could potentially better model the distribution over those samples.

Selecting RVs to split. Once we pick edge ei, j , we then select the RV among those in the scope
of node j. Specifically our vMI heuristics selects the RV Xk sharing more dependencies with the
others in the scope. That is, we maximize the score:

scorevMI(Xk ;Ct,D) :=
∑

Xh,Xk
MI(Xh; Xk) (4)

where MI is the pairwise mutual information estimated on the samples ofD “flowing” through edge
ei, j . By introducing new parameters for highly dependent RVs we can learn more accurate PCs. The
entire local search loop performed by Strudel is summarized in Algorithm 2 in Appendix B.
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5. Fast Mixtures with Strudel

Learning mixtures of PCs greatly improves their performance as density estimators (Vergari et al.,
2015; Di Mauro et al., 2015a, 2017; Rahman and Gogate, 2016).

Issues in learning structured-decomposable mixtures. Building a mixture of several PCs
results in a joint non-deterministic PC, as it introduces a sum node marginalizing a latent variable.
While such a PC would not allow exact MAP inference, it could still be used for queries requiring
structured decomposability. However, to answer complex queries like the expectation of predictive
models (Khosravi et al., 2019a), one would require a structured-decomposable mixture of PCs, i.e.,
an ensemble whose components are structured-decomposable and share the same vtree. To force
such a constraint, while preserving the mixture expressiveness or containing its circuit size, is a
non-trivial research question. Consider learning several PCs with Strudel while requiring them to
share the same vtree. If we learn each component from a different CLT, compiling them to PCs while
enforcing a unique vtree might lead to an exponential blow-up in the size of some PCs. Alternatively,
enforcing Algorithm 1 to output a CLT that can be compactly compiled according to a vtree, would
result in losing the algorithm’s optimality guarantee.

Shared-structure mixtures. We propose a simpler and faster ensembling strategy which proves
to be very effective in practice. We build ensembles of PCs sharing the same structure, concretely the
structure learned by Strudel for single models on that data, while letting each mixture component
have different parameters. This has a number of advantages: we (i) need to perform structure
learning only once, (ii) materialize a single flow fM once (as identical structures will generate the
same flow), and (ii) can evaluate the likelihood of the whole mixture efficiently, as shown in Eq. 1.
This strategy is compatible with classical ensembling schemes such as EM, bagging and boosting.
All these scenarios, e.g., each M step in EM, reduce to learning each mixture component parameters
on a weighted version of the original data. Determinism allows to do this in closed form (cf. Eq. 2).

6. Experiments

In this section, we rigorously evaluate Strudel empirically.3 The natural competitor for Strudel
is LearnPsdd, as they both aim to learn PCs with the same structural properties (cf. Section 4).
We evaluate both learners as density estimators on a series of 20 standard benchmark datasets.
Specifically, we aim to answer the following research questions: (Q1)What is the effect of initializing
structure learning with a CLT? (Q2) How is the splitting heuristic in Strudel affecting structure
learning? (Q3) How do single PCs learned by Strudel compare to those learned by LearnPsdd?
(Q4)Are ensembles of PCs learned by Strudel competitive withLearnPsdd? (Q5) Is our inference
approach based on circuit flows speeding up likelihood computations on ensembles of PCs? (Q6)
Are ensembles of PCs learned by Strudel helpful for advanced probabilistic queries?

(Q1) Effect of using CLTs. To evaluate the impact of different initializations in Strudel, we
compare theCLT initialization schemewe proposed in Section 4.1 against the scheme of LearnPsdd,
where the initial PC is a fully-factorized distribution, normalized for a vtree learned in advance.
For both, we learn PCs with up to 1000 splits on every dataset, then report the mean test bits-
per-dimension (bpd)4 averaged across all datasets as a function of iterations in Figure 2 (left). On

3. Code and experiments are available at https://github.com/UCLA-StarAI/Strudel.
4. bpd(θ;D) = −∑ |D |

i=1 LL(θ; xi)/(log(2) · |D| · m) where m is the number of features in dataset D.
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Figure 2: Effect of different initializations and heuristics in Strudel. We report the mean test bits
per dimensions (bpd) averaged across all datasets (y-axis) for each iteration (x-axis) as scored by
the different initialization schemes (left) and with four possible splitting heuristics (cf. Section 4) in
Strudel when using the CLT initialization (center). On the right, the per-dataset bpd scores (y-axis)
versus total learning time (in secs, x-axis) and learned PC sizes (proportional to circle radiuses times
1000, cf. legend) of the heuristics eFLOW+vMI(blue) and eFLOW+vRAND(red).

average, employing CLTs in Strudel not only delivers more accurate initial PCs as expected, but
better bpds in the long run. Detailed per-dataset curves can be found in Appendix D.5.

(Q2) Effect of splitting heuristics. We adopt the same setting of Q1 and we mix and match
all possible combinations of splitting heuristics: 1) eFLOW-vMI, 2) eFLOW-vRAND, 3) eRAND-
vMI, 4) eRAND-vRAND (cf. Section 4.2). Figure 2 (center) reports the mean test bpd per iteration
averaged across all datasets. Detailed per-datasets plots can be found in Appendix D.6. It is apparent
how selecting edges at random with eRAND delivers suboptimal PCs when compared to eFLOW,
regardless of the heuristic to select the RV. On the other hand, eFLOW-vRAND delivers slightly
more accurate PCs, on average, than eFLOW-vMI. However, this comes at a high price which
is highlighted in Figure 2 (right): circuits learned by eFLOW-vRAND are one or two orders of
magnitude larger and each splitting iteration on them is much slower than for eFLOW-vMI. This
can be explained as follows: vRAND can greatly increase the PC size by arbitrarily picking a RV
far from the root of the sub-circuit selected by eFLOW hence duplicating a larger PC, while vMI
picks more informative RVs which generally are closer to the root of such sub-circuit. Given all the
above, we employ eFLOW-vMI and the CLT initialization scheme in our remaining experiments.

(Q3) Single models. We perform early stopping after 100 iterations with no improvement for
Strudel, and LearnPsdd which we re-run on all datasets by using the hyperparameters reported
in Liang et al. (2017). Table 2 in Appendix D.1 reports the mean test log-likelihood for each dataset.
For single models, Strudel consistently learns more (or equally) accurate PCs than LearnPsdd on
10 datasets out of 20.5 More strikingly, Strudel delivers equivalently accurate PCs sooner than
LearnPsdd. This is clearly shown in Figure 3 (left & center) for all datasets: it takes fewer iterations
forStrudel to achieve comparable bpds and each of its iterations takes at least one order ofmagnitude
less time than LearnPsdd. Lastly, PCs learned with Strudel are still comparable on many datasets
to other PC learners performing local search like selective SPNs (selSPN) (Peharz et al., 2014) and
normal SPNs (seaSPN) (Dennis and Ventura, 2015). Note however, that these competitors learn
PCs with less structural requirements (selSPNs are not structured-decomposable and seaSPNs are
not deterministic), and hence support less tractable inference scenarios (cf. Section 2). Detailed
learning times, circuit sizes and statistical tests are reported in Appendix D.

5. The likelihoods we are reporting for LearnPsdd are significantly better than those originally reported in Liang et al.
(2017). Compared to those original results, Strudel is more accurate than LearnPsdd 16 times out of 20.
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Figure 3: Comparing Strudel and LearnPsdd accuracy and learning times. We report the
mean bpd averaged across all datasets (y-axis) (left), and seconds per iteration during learning (y-
axis) (center) for each iteration (x-axis) as scored by single models learned by Strudel (blue) and
LearnPsdd (red). Expected prediction benchmarks. On the right, the Root Mean Square Error
(RMSE) for median imputation, Strudel and Strudel-Ensemble models (number in parenthesis
shows the number of components in ensemble models).

(Q4) Mixtures with Strudel. We evaluate the shared-structure mixtures of PCs learned by
Strudel by reusing for each dataset the best single PC learned for setting Q1, and performing
parameter learning with EM (Strudel-EM) or a combination of EM and bagging (Strudel-BEM)
to alleviate overfitting as in Liang et al. (2017). For Strudel-EM, we choose the number of mixture
components kEM by a grid search on {2, 5, 10, 15, 20, 25, 30}. Strudel-BEM instead trains
mixtures of PCs using EM on 10 different bagged datasets. Table 9 in Appendix E reports the mean
test log-likelihoods of our mixtures and the corresponding ones learned by LearnPsdd. On 15
datasets Strudel-EM outperforms LearnPsdd-EM, while Strudel-BEM is more accurate than its
counterpart 11 times. This is remarkable if one notes that PCs in LearnPsdd-(B)EM are allowed to
take arbitrary structures and update the structures for each component during learning. As expected,
Strudel drastically reduces the learning times of large mixtures, as single PCs can be learned much
faster, and mixtures can be learned in a fraction of the time by virtue of shared flows (cf. Section 3).

(Q5) Effectiveness of flows. Appendix C reports detailed timings comparing our circuit flow
approach to classical circuit evaluation for computing mixture likelihoods. The circuit flow approach
is orders of magnitude faster (around 102–103), and up to 4591 times faster on the ‘msnbc’ dataset.

(Q6) Advanced probabilistic queries. Finally, we evaluate how PCs learned with Strudel
can be exploited for advanced inference scenarios requiring structured decomposability. We adopt
the experimental setting of Khosravi et al. (2019a) aiming to compute the expected predictions of a
regressor r w.r.t. a generative model represented as a structured-decomposable PC sharing the same
vtree of r . We compute the expected predictions of regressors learned on 4 different benchmarks
and employ a single PC or a mixture learned by Strudel-BEM with 5 bags and a number of EM
components cross-validated in {5, 10, 15, 20}. Figure 3 (right) and Figure 4 in Appendix F show
the RMSE of our models for different percentages of missing values, when compared to common
imputation schemes like median imputation. Not only do single PC perform better than the baseline,
but the cheap mixtures of PCs with shared structure help further reduce the error.

7. Conclusions

In this paper we introduced Strudel to learn structured-decomposable PCs in a fast and simple
way. Strudel delivers accurate single PCs in a fraction of the time of its competitor and effectively
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scales up to learning mixtures of PCs sharing the same structure. We consider Strudel as an initial
stepping stone to learn PCs for several application scenarios where advanced probabilistic inference
is required and out-of-the-scope of the current landscape of tractable probabilistic models.
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Appendix A. Learning a Chow-Liu Tree

We list the algorithm for learning Chow-Liu Trees (Chow and Liu, 1968) here.

Algorithm 1: LearnCLT(D,X, α)
Input : a dataset D over RVs, X = {Xi}ni=1, Laplace smoothing factor α
Output : a Chow-Liu tree model 〈T, θ = {θi |Pai }ni=1〉 estimating p(X)

1 MI← 0n×n
2 for each Xi, X j ∈ X do
3 MIi j ← estimateMI(D, Xi, X j, α)
4 end
5 T ← maximumSpanningTree(MI)
6 T ← traverseTree(T)
7 θ ← {θi,Pai ← estimateCPT(D, Xi, XPai, α)}
8 return 〈T, θ〉

Appendix B. Strudel Algorithm

The complete pseudocode for Strudel is listed in Algorithm 2.

Algorithm 2: Strudel(D,X)
Input : a dataset D over RVs X
Output : a structured-decomposable PC C

1 T ← LearnCLT(D,X)
2 V ← getVTree(T)
3 C ← compile(T,V)
4 while C is not overfitting do
5 e∗i, j ← argmaxei, j ∈edges(C) scoreeFLOW(ei, j ;C,D)
6 X∗← argmaxXk ∈φ(Ci ) scorevMI(Xk ;C,D)
7 C ← SplitOperation(C, e∗i, j, X∗;D)
8 return C

Appendix C. Circuit Flows for Fast Inference

To empirically show that our shared circuit flows implementation (Section 3) benefits the efficient
evaluation of ensembles, compared a vectorized version of the classical algorithm that evaluates
the circuit bottom-up (Darwiche, 2003). We report the time taken to compute likelihoods for an
ensemble as a function of the number of components in Table 1.
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Table 1: Circuit flows for fast inference of ensembles for each dataset. We report the time (seconds)
used evaluate the ensemble circuits on each dataset (y-axis) for different number of component in the
ensemble (x-axis), comparing the circuit flows implementation (blue) and the classical algorithm of
naively evaluating the circuits bottom-up (red).
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Appendix D. Single Models with Strudel

D.1 Density Estimation Performance

We compare Strudel and LearnPsdd as density estimators. The average test-set log-likelihood is
reported in Table 2.

dataset LearnPsdd Strudel selSPN seaSPN

nltcs -6.03 -6.06 -6.03↓ -6.07↑
msnbc -6.04 -6.05 -6.04↓ -6.06↑

kdd -2.17 -2.17 -2.16↓ -2.16↓
plants -13.49 -13.72 -12.97↓ -13.12↓
audio -41.51 -42.26 -41.23↓ -40.13↓
jester -54.63 -55.30 -54.38↓ -53.08↓

netflix -58.53 -58.68 -57.98↓ -56.91↓
accidents -28.291 -29.46 -26.88↓ -30.02↓

retail -10.92 -10.90 -10.88↓ -10.97↑
pumsb-star -25.40 -25.28 -22.66↓ -28.69↓

dna -83.02 -87.10 -80.44↓ -81.76↓
kosarek -10.99 -10.98 -10.85↓ -11.00↓

msweb -9.93 -10.19 -9.93↓ -10.25↓
book -36.06 -35.77 -36.01↓ -34.91↓

eachmovie -55.41 -59.47 -55.73↓ -53.28↓
webkb -161.42 -160.50 -158.52↓ -157.88↓

routers-52 -93.30 -92.38 -88.48↓ -86.38↓
20news-grp -160.43 -160.77 -158.68↓ -153.63↓

bbc -260.24 -258.96 -259.35↑ -253.13↓
ad -20.13 -16.52 -16.94↑ -16.77↑

Table 2: Density estimation benchmarks: single models. Average test log-likelihood for Strudel
and LearnPsdd models. The bold values indicate Strudel is better than or statistically equivalent
with (cf. Appendix D.4) LearnPsdd. On the right other state-of-the-art structure learners, which
are not targeting structured-decomposable circuits (see text). ↑ (resp. ↓) indicates that Strudel is
more accurate (resp. less accurate).
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D.2 Circuit Sizes

We compare the circuit size of models learned by LearnPsdd and Strudel in Table 3. As expected,
Strudel delivers larger circuits but almost always on the same order of magnitude, which makes
sense since Strudel does not penalize on the circuit size.

dataset LearnPsdd Strudel

nltcs 1304 4373
msnbc 5465 20795

kdd 2915 6572
plants 11583 119194
audio 18208 55675
jester 11322 27713

netflix 10997 27173
accidents 8418 75363

retail 2989 3979
pumsb-star 8298 108876

dna 3068 17507
kosarek 7173 37583

msweb 6581 2347
book 10978 54839

eachmovie 20648 123996
webkb 11033 25406

routers-52 10410 36343
20news-grp 15793 58749

bbc 12335 29532
ad 12238 13152

Table 3: Density estimation benchmarks: single models. The circuit sizes of best learned single
models for LearnPsdd and Strudel. As expected, Strudel learns larger PCs than LearnPsdd
since the latter explicitly penalizes larger sizes via its likelihood score. Nevertheless, the increase in
size is contained with the vMI heuristics (cf. Figure 2 (right)) and is a negligible price to pay for a
much faster learner (cf. Table 4).

D.3 Learning Times

To compare the efficiency of LearnPsdd and Strudel, we reproduce the experimental setting
of LearnPsdd and rerun the single model experiments with the latest version of the LearnPsdd
code. Here we report the learning times – both the seconds per iteration (sec per iter) and total
seconds during learning (sec sum) – in Table 4, from which it is clear that Strudel is more efficient
than LearnPsdd.
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dataset LearnPSDD Strudel LearnPSDD Strudel
sec/iter sec/iter sec tot sec tot

nltcs 1.3 0.1 193.0 42.1
msnbc 18.6 0.5 12573.9 1930.3

kdd 7.5 0.4 2325.3 131.4
plants 31.2 1.3 27438.4 1911.3
audio 59.0 0.8 98457.1 848.4
jester 23.0 0.4 23573.1 279.6

netflix 52.3 0.3 51300.7 436.4
accidents 54.0 0.8 29664.2 3393.9

retail 66.5 0.1 16018.3 44.2
pumsb-star 83.7 1.1 40508.6 4737.3

dna 3.0 0.5 595.4 86.6
kosarek 45.8 0.4 30196.8 398.9

msweb 176.6 4.3 93589.7 12.9
book 28.2 1.1 32567.2 2316.8

eachmovie 31.1 0.7 61792.3 1427.2
webkb 5.6 0.4 6333.0 884.3

routers-52 93.2 0.5 98796.0 1561.0
20news-grp 34.6 0.7 53829.2 2593.2

bbc 6.2 0.9 8000.8 2136.3
ad 3.7 1.1 3748.6 300.8

Table 4: Total times (in seconds) taken (sec tot) and averaged times per iteration (sec/ iter) to learn
the best single models on each dataset for LearnPsdd and Strudel. Strudel requires a fraction of
the time of LearnPsdd greatly speeding up learning.
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Table 5: Comparing Strudel and LearnPsdd single models performance and learning times. For
each of the 20 benchmark datasets, we report 1) the test bits per dimensions (bpd) (y-axis) for each
iteration (x-axis) on column 2 and column 4, and 2) seconds per iteration during learning (y-axis)
for each iteration (x-axis) on column 2 and column 4 as scored by Strudel (blue) and LearnPsdd
(red). The plots for the same dataset is aligned next to each other as comparison.
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D.4 Statistical Tests

Since we only have the log-likelihood per sample available for SelSPN, we run pairwise Wilcoxon
signed rank tests to compare Strudel and SelSPN more rigorously. The p-values are reported in
Table 6, in 4 out of 20 datasets, the results are statistically equivalent

dataset LearnPsdd SelSPN

nltcs 5.34E-02 1.35e-02
msnbc 0.00E+00 0.00e+00

kdd 0.00E+00 0.00e+00
plants 6.58E-25 3.46e-56
audio 1.67E-30 4.73e-38
jester 2.37E-45 2.05e-20

netflix 5.29E-04 1.38e-08
accidents 1.46E-102 3.08e-279

retail 2.48E-01 6.54e-05
pumsb-star 1.52E-12 2.83e-269

dna 8.39E-164 2.95e-189
kosarek 5.17E-03 5.93e-21

msweb 2.76E-100 7.06e-114
book 6.48E-02 7.60e-01

eachmovie 2.42E-53 2.33e-45
webkb 1.08E-01 4.07e-01

routers-52 3.56E-04 2.51e-87
20news-grp 1.40E-02 2.37e-07

bbc 1.96E-04 4.33e-01
ad 9.90E-65 1.64e-09

Table 6: Pairwise Wilcoxon signed rank test p-values for the comparisons of test log-likelihoods
for Strudel against LearnPsdd SelSPN on all datasets. Bold values indicate the results are not
statistically significant when picking confidence value 99%.
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D.5 Initializations

Here we report the effect of different initialization methods (CLT and independent) on each dataset
in Table 7.
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Table 7: Effect of different initializations in Strudel for each dataset. We report the mean test bits
per dimensions (bpd) on each dataset (y-axis) for each iteration (x-axis) as scored by the different
initializations: CLT (blue) and independent (red).
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D.6 Heuristics

Here we report the effect of different heuristics on each dataset in Table 8.
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Table 8: Effect of different heuristics in Strudel for each dataset. We report the mean test bits per
dimensions (bpd) on each dataset (y-axis) for each iteration (x-axis) as scored by the 4 combinations
of different heuristics.
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Appendix E. Mixtures with Strudel

We report the test set log-likelihood result in Table 9 of mixtures with Strudel and mixtures with
LearnPsdd.

dataset LearnPSDD Strudel LearnPSDD Strudel
EM EM BEM BEM

nltcs -6.03↓ -6.07 -5.99↓ -6.06
msnbc -6.04↑ -6.04 -6.04↑ -6.04

kdd -2.12↓ -2.14 -2.11↓ -2.13
plants -13.79↑ -13.22 -13.02↑ -12.98
audio -41.98↑ -41.20 -39.94↓ -41.50
jester -53.47↓ -54.24 -51.29↓ -55.03

netflix -58.41↑ -57.93 -55.71↓ -58.69
accidents -33.64↑ -29.05 -30.16↑ -28.73

retail -10.81↓ -10.83 -10.72↓ -10.81
pumsb-star -33.67↑ -24.39 -26.12↑ -24.12

dna -92.67↑ -87.15 -88.01↑ -86.22
kosarek -10.81↑ -10.70 -10.52↓ -10.68

msweb -9.97↑ -9.74 -9.89↑ -9.71
book -34.97↑ -34.49 -34.97↓ -34.99

eachmovie -58.01↑ -53.72 -58.01↑ -53.67
webkb -161.09↑ -154.83 -161.09↑ -155.33

routers-52 -89.61↑ -86.35 -89.61↑ -86.22
20news-grp -160.09↑ -153.87 -155.97↑ -154.47

bbc -253.19↓ -256.53 -253.19↓ -254.41
ad -31.78↑ -16.52 -31.78↑ -16.38

Table 9: Density estimation benchmarks: ensembles. Average test log-likelihood for Strudel and
LearnPsdd models. Two versions of ensembles (EM vs. BEM) are compared separately, ↑ (resp.
↓) indicates that Strudel is more accurate (resp. less accurate). Bold values indicates the best on
certain dataset over 4 methods.
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Appendix F. Expected predictions
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Figure 4: Expected prediction benchmarks. Root Mean Square Error (RMSE) for median im-
putation, Strudel and Strudel-Ensemble models (number in parenthesis shows the number of
components in the ensemble models).
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