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Abstract
Multiple Inference is the problem of finding multiple top solutions for an inference problem in a
graphical model. It has been shown that it is beneficial for the top solutions to be diverse. How-
ever, existing methods, such as diverse M-Best and M-Modes, often rely on a hyper parameter
in enforcing diversity. The optimal values of such parameters usually depend on the probability
landscape of the graphical model and thus have to be tuned case by case via cross validation. This
is not a desirable property. In this paper, we introduce a parameter-free method that directly min-
imizes the expected loss of each solution in finding multiple top solutions that have high oracle
accuracy, and are automatically diverse. Empirical evaluations show that our method often have
better performance than other competing methods.

Keywords: Graphical Model; Multiple Inference; Oracle Accuracy; Expected Loss.

1. Introduction

A
B
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Prediction Set Red
Prediction Set Blue

Figure 1: Illustration of the concept of oracle accu-
racy. The central black node represents the ground
truth. The red and blue nodes represent two sets of
predictions. The best prediction (A) of red set is closer
to the ground truth than the best prediction (B) of the
blue set, in spite that the blue set is generally all closer
to the ground truth. Therefore, the oracle accuracy of
set red is higher than the oracle accuracy of set blue.

For inference problems, much effort has been directed at
algorithms for obtaining one single optimal prediction. In
reality, however, the data are sometimes corrupted or in-
complete, which makes it necessary to increase the con-
fidence in the answer via finding several best solutions
where multiple hypotheses are preferred for advanced
reasoning. Multiple inference has shown impressive re-
sults in a number of computer vision (Batra et al., 2012;
Yadollahpour et al., 2013; Kirillov et al., 2015) and com-
putational biology (Fromer and Yanover, 2009), and ma-
chine translation (Gimpel et al., 2013).

It’s hard to tell which prediction is better than others from multiple results, thus, ideally after
all, we expect one of the given best solution candidates would be chosen as the final answer, i.e. the
chosen solution should have a very high accuracy. Oracle accuracy is used as evaluation criteria
which is defined as the highest accuracy of one of the predictions compared to the ground truth. See
Figure 1. The problem becomes finding a set of solutions which has highest oracle accuracy.

In order to solve the problem, people have proposed different methods targeting better results.
M-Best inference (Dechter et al., 2012) (Figure 2(a)) obtains the M most probable predictions. Di-
verse inference tries to find a set of solutions with both high probability and high diversity. Existing
methods, such as diverse M-Best (Batra et al., 2012) (Figure 2(b)), which iteratively finds M dis-
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similar high probable solutions, and M-Modes (Chen et al., 2013) (Figure 2(c)), which computes
the top M local optima, rely on a hyper parameter in enforcing diversity.

Current approaches for solving multiple inference are all derivatives of finding the posterior
mode(s), aka the MAP estimates. These methods climb the probability distribution landscape:
Routed from the top (MAP), then either choose top one, or jump to farther ones preventing sim-
ilarity. The MAP estimation targets to find high probable point(s) without taking the volume of the
landscape into account.

However, it is important to point out that MAP estimation has drawbacks. The mode(s) are
usually quite untypical of the distribution (Murphy, 2012). When the loss function is beyond 0-1
loss, such as Hamming, besides when the problem is multiple predictions, choosing the mode(s) is
often a very poor choice. Different from MAP estimation, Bayesian methods are characterized by
the use of distributions to summarize data and draw inferences. Why don’t we directly optimize
oracle accuracy by more general Bayesian methods without resorting the MAP estimation? This
belief will provide motivation for a more fundamental Bayesian approach instead.

In contrast to current MAP-based inference, our new objective remodels optimizing oracle ac-
curacy, and directly minimizes expected loss in finding high-accuracy multiple solutions. Our new
method Min-Loss M-Best (Figure 2(d)) aims to jointly find M solutions, which at least one of them
has the lowest expected loss. We will first discuss some theoretical understandings of Min-Loss
M-Best properties, then develop practical solutions for solving it. In particular, due to the high
computational complexity of solving Min-Loss M-Best, we use top M-Best solutions to approxi-
mately simulate the whole distribution, then search the best possible choices from these M solutions.
We implement and test our proposed method with current MAP-based methods, and empirical eval-
uations show that our proposed method has better oracle accuracy than other competing methods.

2. Background

We begin by providing background on multiple inference on probabilistic graphical models.

2.1 Probabilistic Graphical Models

A probabilistic graphical model (PGM) is a collection of local functions over subsets of variables
that conveys probabilistic information. The structure of a PGM can be visualized as a graph. The
graph captures independence inherent in the model that can be useful for interpreting the modeled
data and be exploited by inference tasks (Wainwright and Jordan, 2008; Flerova et al., 2016).

A PGM consists of a finite set of discrete random variables, V , a set of non-negative real-
valued discrete local functions over scopes variables, F , and a combination operator, �. The model
represents a global function, which is a combination of all the local functions.

Random variables correspond to vertices in the graph. The terms of variable, node, and vertex
are used interchangeably. A discrete value assigned to a variable is called a label. A label assignment
for all variables is called a labeling or configuration. We use lowercase letters, x, y, to represent a
labeling. Local functions are functions over a set of variables and can also be called potentials.

When a graphical model’s operator� =
∏

and local functions f(v) = Pr
(
v | parent(v)

)
, we

have a Bayesian network (Pearl, 1988). When a graphical model’s operator � =
∑

and fc(xc) =
− log

(
ψ(xc)

)
, where c are the set of all maximal cliques, we have a Markov random field.

We denote f(x) = − log
(∏

c∈C ψ(xc)
)

as the energy of labeling x, whereψ(xc) is the potential
function over a maximal clique xc. The energy is proportional to the negative log probability.
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Figure 2: Illustration of four multiple inference methods. Each vertical bar corresponds to a labeling while the red bars represent the
predictions of each method. The height of the bar corresponds to the labeling’s probability. (a) M-Best: it uses M most probable solutions
as predictions; (b) Diverse M-Best: it shows the second solution is from the diversity suppression of the first solution; (c) M-Modes: it
represents the solutions are top local optimal solutions where neighborhood size δ = 1; (d) Min-Loss M-Best: it shows the two solutions
are selected when the whole expected loss (the gray shades) are minimum.

Maximum a posteriori (MAP) probabilities, also known as the most probable explanation (MPE),
computes the highest probability labeling over the probability distribution. In the context of infer-
ence applications, the labeling solution is also called the prediction. Let Y be the set of all the
labelings y1, y2, . . . , of a model occurring with probabilities Pr(y1),Pr(y2), . . . , respectively. Its
solution is the global maximum labeling y∗ of the probability landscape. This task is also the same
as finding a labeling y∗ which minimizes the corresponding energies E(·):

y∗ = arg max
y∈Y

Pr(y) = arg min
y

E(y) (1)

2.2 Multiple Inference

In reality, however, the data are sometimes corrupted or incomplete, which makes obtaining a single
optimal solution questionable. It is necessary to increase the confidence in the answer via finding
several best solutions. Then we can ask an expert to choose a final solution (Flerova et al., 2016),
rank and combine a very large pool (Li et al., 2010), or even further improve the solutions in a
human-in-the-loop environment.

M-Best is to obtain the M most probable labelings over the probability distribution. This prob-
lem has been well studied from these approaches: 1) k shortest path like methods by detouring the
current solutions (Lawler, 1972; Nilsson, 1998), 2) M-Best extension of LP-relaxation (Fromer and
Globerson, 2009), and 3) Heuristic search such as M-A* and M-BB (Flerova et al., 2016). However,
these top best solutions tend to be very similar to the MAP solution or to each other, thus lacking
diversity. See Figure 2(a).

Diverse Multiple Inference provides a principled way to trade off dissimilarity versus probabil-
ity. It highlights the concept diversity in the top solution set. The goal is to find a set of high-quality
solutions that are also qualitatively different from each other. In order to make sure solutions are
qualitatively different, we need a distance measure between solutions.

A dissimilarity function ∆( · ) is used to define the distance between several labelings, i.e. ∆( · )
takes a large value if labelings are different, and a small value otherwise. This distance measure
can be classified into nodewise and pairwise distances (Kirillov et al., 2015). Hamming distance
is a special case of both nodewise and pairwise distances, besides an indicator function for each
disagreed variable values. Without loss of generality, in this paper, we assume using Hamming
distance.

Diverse M-Best (Batra et al., 2012) algorithm starts with the MAP as the first solution, then
iteratively and greedily finds next solutions via a regularization of a diversity penalty term. This
penalty term makes the next solution be dissimilar by a certain margin from the solutions collected
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so far:

y∗ = y1 = arg min
y

[
E(y)

]
(2)

ym = arg min
y

[
E(y)− λ

m−1∑
i=1

∆(y, yi)

]
(3)

Let ym denote the mth-best solution, thus y1 is the MAP, y2 is the 2nd-best, and so on. See Fig-
ure 2(b). The λ coefficient measures how strong the penalty term is. An appropriate value of λ is
problem-dependent, and it could be tuned by cross-validation, i.e., we learn the appropriate degree
of diversity by tuning λ on a validation data set.

M-Modes (Chen et al., 2013) method computes the top M locally optimal configurations, each
of which has higher quality than all other solutions within a given scalar distance δ. These locally
optimal solutions, called modes, capture the topographical features of the probabilistic landscape of
the given graphical model, and are also highly possible and are naturally diverse. See Figure 2(c).

Given a non-negative integer δ, δ-neighborhood Nδ(y) is defined as Nδ(y) = { y′ | ∆(y′, y) 6
δ }. So, a labeling y is a δ-mode as y has highest probability (lowest energy) in its δ-neighborhood.
Therefore, M-Modes is an algorithm to compute the top M best modes. This definition ensures the
modes are diverse; any two modes are at least δ away.

Oracle Accuracy is often used as the evaluation criterion in multiple prediction, i.e., the highest
accuracy of one of the M predictions compared to the ground truth, ygt, as commonly done in the
multiple prediction literature (Batra et al., 2012; Gimpel et al., 2013; Chen et al., 2018).

In the context of multiple inference tasks, when the model has already correctly depicted the real
distribution, a ground truth labeling can be regarded as a sample drawn from the model distribution,
i.e., ygt ∼ Y . Oracle accuracy doesn’t care about whether the remaining solutions are poor quality
or not, but one solution with the highest accuracy is accepted. The oracle accuracy of a set of M
labeling, {y}M , by Hamming distance, can be calculated as:

OrcAcc
(
{y}M

)
=
|y| −min

(
∆(y1, ygt), . . . ,∆(yM , ygt)

)
|y|

(4)

Here, the |y| represents the variable size of y. Often, we also use error rate instead of accuracy
which is ErrRate(y) = 100%− OrcAcc(y)

3. Min-Loss Multiple Inference

3.1 Motivation

There is no solid proof that finding these posterior modes can always luckily obtain good results
by applying some diversity constraints over with high probability points. Both Diverse M-Best and
M-Modes have critical drawbacks that they require tuning diversity parameters, namely either λ or
δ, by cross-validation. As λ is a continuous numeric, we cannot easily find an optimal value for
all problems in Diverse M-Best. The δ in M-Modes is an integer value, but its optimum value is
varying for different cases. If λ or δ is set too low, the next solution may still be trapped at same
peak; if too high, many good solutions will be ignored. This problem is related with the topology of
the distribution landscape. Consequently, these methods do not consider the landscape as a whole
picture.
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Pr(x)
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Pr(x)
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Figure 3: Suggested multiple solutions (red bars) for steep
and flat probability distribution landscapes.

This raises a concern about choosing solutions
on different distribution landscapes. See Figure 3.
When the landscape is steep, where some of the so-
lutions have very high probabilities, it is more prof-
itable to select from the peak and sacrifice diversity
(Figure 3(a)); when the landscape is flat, where all
of the labelings have similar probabilities, more di-
verse choices would give higher chance to be close to the ground truth (Figure 3(b)). In addition, for
M-Modes solutions, if there is only one big hill, e.g., many models assuming Gaussian distribution,
the MAP is its only mode solution. We cannot generate more candidates.

Therefore, we should tune the hyper parameter automatically. We agree with the opinion that
diversity should not explicitly enforced ad hoc, and should be an emerging property (Dey et al.,
2015) reflecting different distribution landscapes. Bayesian methods are characterized by the use
of distributions to summarize data and draw inferences. Directly and jointly optimizing oracle
accuracy for M solutions by more general Bayesian methods should be much better than diversifying
the modes. We can create a more fundamental parameter-free approach.

Table 1: An Example

LBL PR

000 .15

001 .14

010 .14

011 .14

100 .14

101 .14

110 .14

111 .01

(a)

2-SOLN S100 S1,000 S10,000 S∞
001, 110 .73 .716 .7201 .72

y
010, 101 .77 .714 .7124 .72

011, 100 .75 .732 .7173 .72

000, 111 .76 .837 .8371 → .84

000, 001 .94 .876 .8617 .86

000, 010 .87 .855 .8613 .86

000, 100 .91 .873 .8544 .86

· · · · · · · · ·

(b)

An Example: We use an example to
motivate our approach. Let us look at a
toy problem over three variables in Ta-
ble 1. Each variable has two labels: 0 and
1; there are totally 23 = 8 different label-
ings (col. LBL in (a)). The probabilities of
all labelings (col. PR in (a)) are as shown
and sum to 1.0. Based on the probabil-
ity distribution in (a), we generated 3 ran-
dom data sets which have 100, 1,000, and
10,000 data points (samples) as the ground
truth. As a multiple inference problem, we
exhaustively enumerate all the possible 2-

solution labelings as our results; there are totally
(
8
2

)
= 28 different choices (pairs). For each choice,

we assumed it as the true prediction and calculated average error rates on each data set (listed at col.
S100, S1,000, and S10,000 in (b)). The evaluation we use is oracle accuracy on Hamming distance.
For simplicity, we just list top 7 best pairs with lowest average error rates. As the number of samples
increased, the rates seemed to converge to a limit (col. S∞ in (b)).

Surprisingly, the lowest error rate pairs do not include MAP labeling 000 with highest proba-
bility of 0.15. We can explain it as follows: It would have high accuracy but be lack of diversity
if we chose 000 and any other 0.14 labelings, while it would have enough diversity but be lack of
accuracy if we chose 000 and very low probability 111 (0.01). So that the best three pairs of choices
do not include MAP labeling 000.

From this example, we notice the MAP solution could not always be included in the optimal re-
sults. A good prediction should consider both its distance to other labelings and their probabilities,
as the ground truth is drawn from distribution. In many machine learning evaluation tasks, a pre-
dicted solution which is different from the correct answer would not be forfeited all the points; using
Hamming distance is one example. Therefore, using most probable solutions might not be a good
choice because it does not consider distances between solutions. Using MAP does not necessarily
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lead to high prediction accuracy. So, how can we quantitatively expect any prediction’s distance
from the ground truth? These observations motivate us to propose the concept of the expected loss
of a labeling.

3.2 Expected Loss

Given any target labeling y for prediction, the expected loss or loss of y is the accumulation of the
distance of each labeling ygt from y weighted by probability of ygt, i.e., the dot product of distances
and probabilities:

loss(y) = E
ygt∼Y

[
∆(y, ygt)

]
=
∑
y′∈Y

Pr(y′) ·∆(y, y′) (5)

So that, if a generated data set has an enough large number of samples, the labelings’ expected
error rate (distance) should converge to this expected loss (See Table 1 col. S∞).

Based on the concept of expected loss, we define another useful optimization inference task
called Min-Loss MAP:

Problem 1 (Min-Loss MAP). Find a labeling of a model which has lowest expected loss:

y∗ = arg min
y∈Y

loss(y) (6)

The solution of Min-Loss MAP can be quite different from MAP. MAP can be considered as a
special case of Min-Loss MAP in which ∆(y, ygt) = [[ y 6= ygt ]].

Common distance measures are nodewise distance, thus we can utilize this property to effi-
ciently minimize each variable’s distance. Then summing over these choices are naturally the global
minimum.

Hamming distance is a nodewise distance, and it counts distances of different variables inde-
pendently. Hence finding a minimal distance label of a variable (i.e. summation of other labels has
minimum probability) is the same as a maximal marginal (i.e. current label has maximum prob-
ability). We can accordingly conclude such a theorem that max marginals can exactly solve the
Min-Loss MAP problem using Hamming distance.

Theorem 1. Max marginals⇔ Hamming Min-Loss MAP.

(a) Average Accuracy (b) Oracle Accuracy

Figure 4: Diagrams shows the different measurements
between (a) Average Accuracy and (b) Oracle Accuracy
for M = 2. The red nodes represent the predictions
and the black circles represent other labelings. The lines
between red and black nodes represent the ways for dis-
tance measurement. For average accuracy, the loss takes
all the labelings into account, while for oracle accuracy,
it only measures the distances of closer predictions.

Despite max marginals have high accuracy is a
known observation in the literature, we should notice
that this split rule can only be applied for Hamming loss.

3.3 Min-Loss M-Best

Similar to M-Best multiple inference problems, we can
also extend our Min-Loss MAP task to Min-Loss M-
Best, which computes the top M solutions with lowest
expected loss. But it is not the correct way for oracle
accuracy when M > 1. Oracle accuracy consider the
highest prediction as the distance measurement; while naive Min-Loss M-Best consider each pre-
diction to the whole distribution, i.e. average accuracy. See Figure 4 for a better understanding
of the difference. Therefore, optimizing oracle accuracy for Min-Loss M-Best problem is totally
another story.
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4. Min-Loss M-Best for Oracle Accuracy

Formally, optimizing oracle accuracy for M -solution problem by minimizing expected loss can be
described as:

{y}∗M = arg max
{y}M∈Y

OrcAcc
(
{y}M

)
= arg min
{y}M∈Y

loss({y}M ) (7)

= arg min
{y}M∈Y

E
ygt∼Y

[
min

(
∆(y1, ygt), . . . ,∆(yM , ygt)

) ]
(8)

= arg min
{y}M∈Y

∑
y′∈Y

Pr(y′)

[
min

(
∆(y1, y

′), . . . ,∆(yM , y
′)
)]

(9)

This problem aims to jointly findM solutions, {y}M , which at least one of them has lowest expected
loss.

As the whole labeling distribution Y is exponentially large, we cannot find an exact algorithm to
solve the Min-Loss MAP problem in a large model. However, it is possible to solve it approximately
using M-Best solutions, i.e., let {y}m(Best) ∼ Y .

Once we have generated m(Best) solutions, we can form a pairwise loss table where each entry
is a term that is the row’s probability multiplies the distances of two solutions. For conciseness, we
simplified the terms: Pr(ym) as pm, and ∆(ym, yn) as ∆m,n. This is a pre-processing step. See
Figure 5. Note that the diagonal entries are zero as ∆m,m = 0.

y1 y2 . . . ym−1 ym(Best)

y1 0 p1∆12 . . . p1∆1,m−1 p1∆1,m

y2 p2∆21 0 . . . p2∆2,m−1 p2∆2,m

...
...

... · · ·
...

...

ym−1 pm−1∆m−1,1 pm−1∆m−1,2 . . . 0 pm−1∆m−1,m

ym(Best) pm∆m,1 pm∆m,2 . . . pm∆m,m−1 0

Figure 5: Pairwise Loss Table from M-Best. The red shaded two columns are
two chosen labelings (y2 and ym−1). The red circled terms are weighed dis-
tances to each labelings (rows). The target optimizing problem is to minimize
the summation of these terms.

We can formulate finding an oracle
accuracy M solutions as: Minimize the
summation of all the entries such that
1) only one entry for each row can be
selected and 2) the number of corre-
lated columns should at most M . For
no ambiguity, we use m for the input
table size (from M-Best), andM for the
number of solutions of oracle accuracy.
We use at most since that it is accept-
able to use fewer solutions to get the
same results.

After compiling the table, we can formally define the optimization problem as follows:

min
m∑
i=1

m∑
j=1

µij · (pi∆ij) (10)

s.t. µij ∈ {0, 1}, ∀i, j (11)
m∑
j=1

µij = 1, ∀i (12)

m∑
j=1

m∏
i=1

(1− µij) > m−M, ∀i, j (13)

Our target is to optimize over the indicator variables µ, with the constraints that force each row
to choose only one entry.

7



CHEN ET AL.

Algorithm 1 Finding Min-Loss M-Best Solutions

Require: M-Best solutions: {y}m; M
Ensure: Optimal M predictions: {y}∗M

function MIN-LOSS M-BEST({y}m, M )
{y}m.sort(on = Pr)
lossmin ←∞
YM ← Combination({y}m,M)

or Sample({y}m,M)
for all {y}M ∈ YM do

loss← 0
for all ym ∈ {y}m do

loss← loss+ pm ·min(∆m,M1 , . . . ,∆m,M )
if loss > lossmin then break

if loss < lossmin then
lossmin = loss, {y}∗M = {y}M

return {y}∗M

The product of the last constraint simulates an OR constraint, indicating the number of involving
columns (labelings chosen) should be fewer than M . See Figure 5’s red shades. Because the last
constraint is not linear, we cannot make it as an integer linear programming problem.

Searching Optimal Min-Loss M-Best

We propose a search method: For small M , we can exhaustively search the possible choices yM
from top m solutions. And for each choice, we compute its oracle accuracy with respect to the
m solutions. We report the choices with minimum expected loss, y∗M . When we accumulate the
distance, we prefer to expand labelings which have high probabilities. At the same time, current
best solution is used as an upper bound to prune rest computation which has larger value than the
bound. See Algorithm 1. This method has complexity O(

(
m
M

)
vmM).

When M is large, we would like to randomly sample M solutions out of m instead of exhaus-
tively enumerating all the possible choices. In addition, we also use current best result to do the
pruning, then run the method for certain amount of time and report the current best choices we
found.

One interesting question is whether there are some heuristic functions which can help us speed
up the search. Since getting more labelings will obtain lower distances, searching optimal Min-loss
M-Best is not easy to be formulated as shortest path problems. One tentative way is to formulate
the problem from m choosing M to m not choosing (m −M), but it also raised another problem
that the search space is even larger (because m � M ). Finding better heuristic search algorithms
to solve this problem is interesting but left as future work.

5. Experiments

We implement and test our proposed methods (Min-Loss M-Best), including exact and approximate
algorithms for exhaustive and random search algorithms for oracle accuracy. We use M-Best, Di-
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verse M-Best, and M-Modes as our baseline. We try to find general parameters for Diverse M-Best
and M-Modes with best performances. We implement M-Best from Nilsson (1998)’s partition can-
didates method and Flerova et al. (2016)’s heuristic search method, Diverse M-Best from Batra
et al. (2012), and M-Modes from Chen et al. (2018)’s heuristic search using tree decomposition.

Without loss of generality, we selected several discrete benchmark models from bnlearn Bayesian
Network Repository 1, including two small networks, Asia (Lauritzen and Spiegelhalter, 1988) and
Sachs (Sachs et al., 2005), two medium networks, Child (Spiegelhalter et al., 1993) and Alarm (Bein-
lich et al., 1989), and two large networks2, Hepar2 (Onisko, 2003) and Win95pts. Our goal is to
test the collective capability of predicting a set of top labelings (M = 1, 3, 5, 7, 9) with more or-
acle accuracy than M-Best, Diverse M-Best, or M-Modes. Hamming distance is used as distance
measure. There is no exact methods for oracle accuracy except M = 1. We generated 1,000,000
random samples, as the ground truth, from each given network to prevent any bias of the data sets.
Next, we test each methods’ error rates (divided by number of variables; we omit the percent, %,
the lower the better) over oracle accuracy on different M.

Our experiments were performed on an IBM System with 32 core 2.67GHz Intel Xeon Proces-
sors and 512G RAM. The program was written in C++ using the GNU compiler G++ on a Linux
system. We just use one core for each program. We use functions from an aforementioned R pack-
age, bnlearn 3, for simulating random data from given Bayesian networks. We also use functions
from SMILE 4 to construct the junction trees from the Bayesian networks. Last, accuracy evaluation
on each methods’ generated prediction sets is written in a MATLAB script.

5.1 Oracle Accuracy Performance

We list the results for all the networks, including two best performance parameters for Diverse
M-Best and M-Modes. The results are shown in Table 2.

The number marked after the network name is its variables size. Two parameters for Diverse
M-Best are listed, λ = 0.1 and 0.3, for either of them works well on these 6 models. Similar, we
list two parameters for M-Modes, δ = 1 and 3. Some of the datesets like Asia, Sachs, and Hepar2,
do not have δ = 3 modes. For our Min-Loss M-Best method, we use top 1000 M-Best solutions to
compute. Asia is an exception because it is a small network that there are only 256 labelings, so we
use them all. When M is small, like M = 1, 3, we use exact method, while we use random sample
method instead when M is large, like M = 5, 7, 9. The program runs for one hour then report best
found solutions so far. Exception for Asia since we only use 256 labelings, we can exactly compute
M = 5.

Generally, Min-Loss M-Best is competitive in all the methods. For small M, Min-Loss M-Best
can be exactly solved so that it has very good performance comparing to other methods. But when
M is large, random methods sometimes weak inferior than some other methods.

Diverse M-Best has better performance on small networks setting λ = 0.3, and worse perfor-
mance setting λ = 0.1. For example, Diverse M-Best has a very good performance where λ = 0.3
on Asia. But when it comes to large models, a small λ = 0.1 always works better than λ = 0.3.

1. www.bnlearn.com/bnrepository/
2. With respect to high complexity of M-Modes and Min-Loss M-Best, tens of variables’ networks can be called “large”.

At bnlearn repository, these models also belongs to Large Networks.
3. www.bnlearn.com/
4. www.bayesfusion.com/
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Table 2: Error rates (%) of oracle accuracy on benchmark models

M = 1 3 5 7 9

Asia (8)

M-Best 20.46 6.61 4.40 3.54 1.55

Diverse M-Best (λ = 0.1) 20.46 8.70 8.70 4.74 3.27

(λ = 0.3) 20.46 6.74 3.27 2.37 2.35

M-Modes (δ = 1) 20.46 6.74 6.44 – –

Min-Loss M-Best (256) 20.45 6.61 3.27 3.21 2.86

Sachs (11)

M-Best 37.81 31.08 27.87 26.32 25.12

Diverse M-Best (λ = 0.1) 37.81 30.63 28.07 22.49 21.37

(λ = 0.3) 37.81 30.77 24.24 22.54 21.81

M-Modes (δ = 1) 37.81 31.08 24.38 23.33 21.99

Min-Loss M-Best (1000) 37.81 27.67 24.07 22.27 21.42

Child (20)

M-Best 43.44 28.34 27.61 26.31 25.72

Diverse M-Best (λ = 0.1) 43.44 28.34 27.52 25.55 24.60

(λ = 0.3) 43.44 29.09 27.00 25.83 25.23

M-Modes (δ = 1) 43.44 28.34 26.58 25.62 24.92

(δ = 3) 43.44 28.34 26.28 24.98 24.12

(δ = 4) 43.44 30.42 28.74 – –

Min-Loss M-Best (1000) 39.09 28.34 26.91 25.58 25.06

M = 1 3 5 7 9

Alarm (37)

M-Best 20.07 17.69 17.18 16.77 16.43

Diverse M-Best (λ = 0.1) 20.07 16.36 15.18 14.71 13.99

(λ = 0.3) 20.07 17.25 17.02 16.72 16.44

M-Modes (δ = 1) 20.07 15.94 14.37 12.74 12.02

(δ = 3) 20.07 15.86 13.87 12.92 12.11

Min-Loss M-Best (1000) 20.07 15.73 13.77 12.63 11.82

Hepar2 (70)

M-Best 22.27 21.32 20.88 20.66 20.51

Diverse M-Best (λ = 0.1) 22.27 20.99 20.02 19.84 19.72

(λ = 0.3) 22.27 21.27 21.24 21.24 21.24

M-Modes (δ = 1) 22.27 21.16 20.88 20.62 20.53

Min-Loss M-Best (1000) 22.26 20.95 20.24 19.89 19.62

Win95pts (76)

M-Best 9.22 7.75 7.34 7.11 6.79

Diverse M-Best (λ = 0.1) 9.22 8.08 7.57 7.18 6.81

(λ = 0.3) 9.22 8.15 8.12 8.08 8.08

M-Modes (δ = 1) 9.22 7.75 7.02 6.47 6.28

(δ = 3) 9.22 7.84 6.99 6.62 6.49

Min-Loss M-Best (1000) 9.22 7.35 6.89 6.34 6.28

M-Modes’ generally works well at δ = 3. We omit other larger δ size, while we added δ = 4 for
Child as reference, they are not as good as δ = 3. The fact that δ value is integer somehow makes it
lack of capability to reach best performance.

The following is detailed discussion on each network respectively:

Asia is a small network has only 8 variables, and each variable has 2 labels. So, there are
only 28 = 256 different labelings. We observe the M-Best solutions probabilities, and found top 5
solutions have probabilities: 0.29, 0.20, 0.15, 0.11, and 0.05. The probability distribution is very
steep, so that it much prefer top higher probability solutions than diversity. That also explained why
the M-Best has fairly good performance.

Sachs is another small network with only 11 variables and each variable have 3 labels. The
results are general worse than Asia’s, because the probability distribution is obviously small and
flat. The top five solutions’ probabilities are: 0.019, 0.016, 0.013, 0.012, and 0.011.

Child is a medium size network, and has 20 variables. The label size is from 2 to 6. The results
show worse performances on all methods. It is not surprising since the top 10-Best solutions are
from 5.8 × 10−3 to 2.1 × 10−3, which is both low and flat with respect to a not large model. We
can see that as M-Modes is increasing diversity, its error rates are getting lower at δ = 3, and then
going up from δ = 4. This is a typical phenomenon at diverse inference methods that they need to
find this “dent” by cross-validation.

Alarm is another medium size network with 37 variables, and 2 to 4 label size. It has a fairly
well general accuracy on all tests.

Hepar2 is a large network with 70 variables. It has label size 2 to 4. Because top M-Best
solutions are low and flat, top 10 solutions’ probabilities are from 7.8 × 10−8 to 5.8 × 10−8 for
example, top 1000 or 10000 still cannot fully converge to the exact solution. Meanwhile, few of
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modes (we can only compute 4 modes for δ = 2) also indicates this distribution is smooth such that
M-Modes method cannot utilize its design to have many diverse solutions.

Win95pts is another large network with 76 variables. It has label size 2 for all of the variables.
We find that the top 3-Best’s probabilities are 0.05, 0.033, and 0.015. For such a large network, they
are high and steep. This explains why most of the results work well on Win95pts. Its probability
distribution is high and steep. Our Min-Loss M-Best method works much better than others over all
chosen m values.

5.2 Top M and Running Time
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Figure 6: Experimental results for Min-Loss M-Best of de-
scending error rates (%) on different settings for network
Alarm M = 5

In the last two experiments, we use a medium net-
work Alarm and choose M = 5 to quantitatively ob-
serve (1) how the m chosen and (2) how the running
time impact the performances of Min-Loss M-Best.

First experiment, we exact solve the problem
from different top m-best solutions from 10 to 300.
See Figure 6 (Left). The error rates quickly dive
from 17.18 reaching a local minimum at about top
50 and go a bit higher at top 75, then keep going
down. When the number of top solutions is large
enough to depict the distribution, including more top solutions may not guarantee a lower error
rates, it could oscillate a bit. But globally the trend does slowly converge.

The running time trend is similar. See Figure 6 (Right). It quickly gets a fairly low error rate
solution, but keep staying and sometimes oscillate at that position. A longer running time does help
to find a even better solution, but most of the time, it stays and does not descend.

6. Concluding Remarks

We developed and evaluated a fundamental formulation for multiple inference, as a Bayesian method
approach, by directly optimizing oracle accuracy via expected loss. The biggest advantage of the
new method is that it is parameter free, in contrast to other MAP estimation diverse approaches. We
demonstrated that this idea is clearly effective.

Although promising, the proposed methods are currently restricted by approximately using top
M-Best solutions to simulate the whole distribution. If the model is very large, top M-Best solutions
may not be able to depict the whole distribution, as “long tail” phenomena happens. But expanding
beyond top M solutions will lead this problem to be much harder to solve. More advanced tech-
niques are yet to be developed. For example when using nodewise distance measures, it is worth
investigating whether we can continue utilizing this splittable property (as Theorem 1) either to
prune some values or divide and conquer the problem in a much more intelligent way.
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